Normalized defining polynomial
\( x^{18} - 6 x^{17} + 42 x^{16} - 162 x^{15} + 666 x^{14} - 1946 x^{13} + 5146 x^{12} - 10402 x^{11} + 17101 x^{10} - 23298 x^{9} + 62720 x^{8} - 128674 x^{7} + 171273 x^{6} - 132222 x^{5} + 221722 x^{4} - 340356 x^{3} + 777688 x^{2} - 587872 x + 444536 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-185723426137096770687205679300608=-\,2^{18}\cdot 7^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(364=2^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{364}(1,·)$, $\chi_{364}(261,·)$, $\chi_{364}(9,·)$, $\chi_{364}(207,·)$, $\chi_{364}(81,·)$, $\chi_{364}(23,·)$, $\chi_{364}(179,·)$, $\chi_{364}(155,·)$, $\chi_{364}(29,·)$, $\chi_{364}(95,·)$, $\chi_{364}(289,·)$, $\chi_{364}(165,·)$, $\chi_{364}(43,·)$, $\chi_{364}(303,·)$, $\chi_{364}(113,·)$, $\chi_{364}(51,·)$, $\chi_{364}(53,·)$, $\chi_{364}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{12} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{3}{10} a^{3} + \frac{1}{10} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} + \frac{3}{10} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} + \frac{2}{5}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{11} + \frac{1}{5} a^{10} + \frac{1}{10} a^{8} + \frac{3}{10} a^{7} + \frac{3}{10} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{15} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{3}{10} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{924469886678097220} a^{16} + \frac{1616796332281923}{462234943339048610} a^{15} - \frac{11233555019496283}{462234943339048610} a^{14} + \frac{9454172176314762}{231117471669524305} a^{13} - \frac{2910758061108677}{462234943339048610} a^{12} - \frac{103589426233954037}{462234943339048610} a^{11} + \frac{15185138689429067}{231117471669524305} a^{10} + \frac{75259975632087943}{462234943339048610} a^{9} + \frac{199544557540536387}{924469886678097220} a^{8} + \frac{109357885467094279}{231117471669524305} a^{7} + \frac{159735850379331473}{462234943339048610} a^{6} + \frac{1844877761122959}{231117471669524305} a^{5} + \frac{39599376127364469}{924469886678097220} a^{4} + \frac{17043452303928972}{231117471669524305} a^{3} + \frac{174589521285633}{1276892108671405} a^{2} - \frac{55552561382551376}{231117471669524305} a + \frac{433954623074902}{1276892108671405}$, $\frac{1}{40682413003359742540366026580} a^{17} - \frac{6289788763}{40682413003359742540366026580} a^{16} + \frac{371718571731572990095908591}{20341206501679871270183013290} a^{15} + \frac{633447015172858676949620417}{20341206501679871270183013290} a^{14} + \frac{470463531194621222200520328}{10170603250839935635091506645} a^{13} - \frac{259013653596573564574346791}{10170603250839935635091506645} a^{12} - \frac{611470987343768971154977991}{20341206501679871270183013290} a^{11} - \frac{445951442540578806997395354}{10170603250839935635091506645} a^{10} - \frac{6952826813910008784546782807}{40682413003359742540366026580} a^{9} + \frac{4227210045206766400935310247}{40682413003359742540366026580} a^{8} + \frac{6122441332180372104547647717}{20341206501679871270183013290} a^{7} + \frac{3383304918359345259360734551}{10170603250839935635091506645} a^{6} - \frac{777542368247539955039419969}{40682413003359742540366026580} a^{5} + \frac{3455601902522288635350901359}{40682413003359742540366026580} a^{4} + \frac{268202804133592189690915524}{10170603250839935635091506645} a^{3} + \frac{2631640177263466295915024417}{20341206501679871270183013290} a^{2} - \frac{513333149722624080833927244}{2034120650167987127018301329} a - \frac{25877207197357713235590982}{56191178181436108481168545}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{18}$, which has order $2592$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 3.3.8281.1, 3.3.8281.2, 3.3.169.1, \(\Q(\zeta_{7})^+\), 6.0.57054367552.1, 6.0.57054367552.2, 6.0.23762752.1, 6.0.337599808.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |