Normalized defining polynomial
\( x^{18} - 7 x^{17} - 74 x^{16} + 408 x^{15} + 2558 x^{14} - 8242 x^{13} - 39184 x^{12} + 84268 x^{11} + 374289 x^{10} - 488799 x^{9} - 1668350 x^{8} + 2701876 x^{7} + 6853576 x^{6} - 8927584 x^{5} + 2280064 x^{4} + 44681728 x^{3} + 24702976 x^{2} - 40402944 x + 165412864 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-184816991082370630395707686096416257574727=-\,7^{9}\cdot 127^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(889=7\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{889}(1,·)$, $\chi_{889}(195,·)$, $\chi_{889}(449,·)$, $\chi_{889}(400,·)$, $\chi_{889}(657,·)$, $\chi_{889}(146,·)$, $\chi_{889}(22,·)$, $\chi_{889}(734,·)$, $\chi_{889}(799,·)$, $\chi_{889}(545,·)$, $\chi_{889}(99,·)$, $\chi_{889}(484,·)$, $\chi_{889}(869,·)$, $\chi_{889}(230,·)$, $\chi_{889}(615,·)$, $\chi_{889}(687,·)$, $\chi_{889}(433,·)$, $\chi_{889}(636,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{512} a^{10} - \frac{1}{512} a^{9} - \frac{1}{256} a^{8} - \frac{1}{256} a^{7} + \frac{9}{512} a^{6} + \frac{15}{512} a^{5} + \frac{1}{64} a^{4} - \frac{3}{128} a^{3} - \frac{1}{32} a^{2}$, $\frac{1}{1024} a^{11} + \frac{1}{1024} a^{9} + \frac{31}{1024} a^{7} - \frac{1}{32} a^{6} - \frac{5}{1024} a^{5} - \frac{1}{16} a^{4} - \frac{55}{256} a^{3} + \frac{3}{32} a^{2} - \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{1024} a^{12} - \frac{1}{1024} a^{10} + \frac{1}{512} a^{9} + \frac{3}{1024} a^{8} - \frac{7}{256} a^{7} - \frac{23}{1024} a^{6} - \frac{15}{512} a^{5} + \frac{13}{256} a^{4} + \frac{7}{128} a^{3} - \frac{1}{32} a^{2}$, $\frac{1}{2048} a^{13} - \frac{1}{2048} a^{12} - \frac{1}{2048} a^{11} - \frac{1}{2048} a^{10} - \frac{3}{2048} a^{9} + \frac{1}{2048} a^{8} + \frac{29}{2048} a^{7} + \frac{5}{2048} a^{6} - \frac{25}{1024} a^{5} + \frac{31}{512} a^{4} - \frac{13}{256} a^{3} - \frac{1}{16} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{16384} a^{14} + \frac{1}{16384} a^{13} - \frac{5}{16384} a^{12} + \frac{1}{16384} a^{11} + \frac{9}{16384} a^{10} + \frac{15}{16384} a^{9} + \frac{1}{16384} a^{8} + \frac{283}{16384} a^{7} - \frac{199}{8192} a^{6} - \frac{91}{4096} a^{5} - \frac{127}{2048} a^{4} - \frac{63}{256} a^{3} + \frac{11}{128} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16384} a^{15} + \frac{1}{8192} a^{13} - \frac{1}{8192} a^{12} - \frac{1}{8192} a^{10} - \frac{19}{8192} a^{9} + \frac{17}{8192} a^{8} - \frac{449}{16384} a^{7} - \frac{219}{8192} a^{6} + \frac{249}{4096} a^{5} - \frac{29}{2048} a^{4} - \frac{3}{32} a^{3} + \frac{5}{128} a^{2} + \frac{1}{16} a$, $\frac{1}{8585216} a^{16} + \frac{3}{2146304} a^{15} + \frac{31}{4292608} a^{14} + \frac{241}{4292608} a^{13} - \frac{593}{2146304} a^{12} + \frac{1477}{4292608} a^{11} + \frac{207}{4292608} a^{10} + \frac{10791}{4292608} a^{9} - \frac{8301}{8585216} a^{8} + \frac{25409}{4292608} a^{7} + \frac{15221}{2146304} a^{6} + \frac{57223}{1073152} a^{5} - \frac{429}{16768} a^{4} - \frac{99}{512} a^{3} + \frac{1541}{8384} a^{2} + \frac{3}{2096} a + \frac{15}{262}$, $\frac{1}{5147308932188942699962417953898496} a^{17} - \frac{289213559706660330831657415}{5147308932188942699962417953898496} a^{16} - \frac{7782070714380379334827846369}{2573654466094471349981208976949248} a^{15} - \frac{8069213327170001696975199015}{643413616523617837495302244237312} a^{14} + \frac{258332583359123054476580760783}{2573654466094471349981208976949248} a^{13} + \frac{164123837878683789139006110487}{2573654466094471349981208976949248} a^{12} + \frac{2356959297582012576709153617}{80426702065452229686912780529664} a^{11} - \frac{1096046297675092170440370729493}{1286827233047235674990604488474624} a^{10} - \frac{13709490863146907964272780294383}{5147308932188942699962417953898496} a^{9} + \frac{18432851834011276415995162619457}{5147308932188942699962417953898496} a^{8} + \frac{14731143062992756891069746434165}{2573654466094471349981208976949248} a^{7} + \frac{35470795014155501889572490490017}{1286827233047235674990604488474624} a^{6} - \frac{16034008916883355058726103377331}{643413616523617837495302244237312} a^{5} - \frac{4668762193906598597389696576973}{160853404130904459373825561059328} a^{4} + \frac{1601498177428900666056031456283}{40213351032726114843456390264832} a^{3} - \frac{801035427338539178707044484361}{10053337758181528710864097566208} a^{2} - \frac{99278699019723684308677991525}{628333609886345544429006097888} a + \frac{901755898428729847463238729}{157083402471586386107251524472}$
Class group and class number
$C_{9}\times C_{11861703}$, which has order $106755327$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16450307908.665707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.16129.1, 6.0.89229611863.2, 9.9.67675234241018881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $127$ | 127.9.8.1 | $x^{9} - 127$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 127.9.8.1 | $x^{9} - 127$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |