Normalized defining polynomial
\( x^{18} - 9 x^{17} + 207 x^{16} - 1452 x^{15} + 18648 x^{14} - 105840 x^{13} + 976272 x^{12} - 4545126 x^{11} + 32991876 x^{10} - 125652506 x^{9} + 749248587 x^{8} - 2289051090 x^{7} + 11455485945 x^{6} - 26836628409 x^{5} + 113757248880 x^{4} - 185230785420 x^{3} + 665351396991 x^{2} - 576856453545 x + 1743009516489 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-184093323834250344728515453895309591043=-\,3^{44}\cdot 83^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2241=3^{3}\cdot 83\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2241}(1,·)$, $\chi_{2241}(580,·)$, $\chi_{2241}(1993,·)$, $\chi_{2241}(331,·)$, $\chi_{2241}(1744,·)$, $\chi_{2241}(82,·)$, $\chi_{2241}(1495,·)$, $\chi_{2241}(2074,·)$, $\chi_{2241}(1246,·)$, $\chi_{2241}(1825,·)$, $\chi_{2241}(997,·)$, $\chi_{2241}(1576,·)$, $\chi_{2241}(748,·)$, $\chi_{2241}(1327,·)$, $\chi_{2241}(499,·)$, $\chi_{2241}(1078,·)$, $\chi_{2241}(250,·)$, $\chi_{2241}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{17} + \frac{844025025162697703750515595828224182002632807731313071545598019806044}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{16} + \frac{3355913134219336081047626458394976379443173309582782839985576584069580}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{15} - \frac{3754139160504606336067950492963393691477461638539094846244695642825669}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{14} - \frac{3694024615500895837312585305306878488624159622801100366659096814897243}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{13} - \frac{991131744270859779273680969828719950967777025628576488482957594535040}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{12} - \frac{1465042632504398070272019938899714209276665930739900059713317433324913}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{11} + \frac{1061901044099557858271459772680836866521224744204389347873439414462390}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{10} + \frac{598380782842089103505942907536411045638044254453453503119790110707958}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{9} - \frac{2109413736642792047453016564159506880552312637586368651882437178680581}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{8} - \frac{143421357061014064979183601549814243963729558214911242160431519238459}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{7} - \frac{1927565433869611863606853728717085777342363327575448816210310506269344}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{6} + \frac{255663732526406986648015419682695527669297171364057118412245919044091}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{5} - \frac{1985661768863753763525930893103231005264470416980141049049143762911828}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{4} + \frac{2535617618810669601918069203889901405122813743460769809674281867075966}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{3} - \frac{2372997488237660481463464329416651597419764825429681107724776800982294}{7802082235271410044905863798259772147219849742688159040911865549538753} a^{2} - \frac{562733246139416131208530095779292411306515856556917727620309005219386}{7802082235271410044905863798259772147219849742688159040911865549538753} a + \frac{1259093244963763269288826842179173285548003526772012165100627483611620}{7802082235271410044905863798259772147219849742688159040911865549538753}$
Class group and class number
$C_{10774323}$, which has order $10774323$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-83}) \), \(\Q(\zeta_{9})^+\), 6.0.3751494507.2, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 83 | Data not computed | ||||||