Normalized defining polynomial
\( x^{18} - 3 x^{17} - 3 x^{16} + 10 x^{15} + 21 x^{14} - 45 x^{13} - 17 x^{12} + 18 x^{11} + 126 x^{10} - 184 x^{9} + 162 x^{8} - 318 x^{7} + 523 x^{6} - 471 x^{5} + 309 x^{4} - 138 x^{3} + 45 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-184020479637478805864448=-\,2^{44}\cdot 3^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{76} a^{16} + \frac{3}{76} a^{15} + \frac{3}{38} a^{14} - \frac{1}{4} a^{13} - \frac{7}{38} a^{12} - \frac{15}{76} a^{11} - \frac{1}{4} a^{10} - \frac{9}{38} a^{9} - \frac{1}{76} a^{8} - \frac{9}{76} a^{7} + \frac{11}{38} a^{6} - \frac{29}{76} a^{5} - \frac{5}{19} a^{4} - \frac{7}{76} a^{3} - \frac{9}{76} a^{2} - \frac{17}{38} a - \frac{1}{38}$, $\frac{1}{1468477244} a^{17} + \frac{63909}{77288276} a^{16} + \frac{106551275}{1468477244} a^{15} + \frac{26300437}{734238622} a^{14} + \frac{44414203}{734238622} a^{13} - \frac{99769889}{734238622} a^{12} - \frac{156085677}{1468477244} a^{11} + \frac{71739935}{1468477244} a^{10} - \frac{167498815}{734238622} a^{9} - \frac{69122785}{1468477244} a^{8} - \frac{1075161}{2571764} a^{7} + \frac{3876049}{19322069} a^{6} - \frac{91323849}{367119311} a^{5} - \frac{24560256}{367119311} a^{4} + \frac{227740073}{1468477244} a^{3} - \frac{12637173}{1468477244} a^{2} + \frac{596592443}{1468477244} a - \frac{166570538}{367119311}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1953902}{1016951} a^{17} - \frac{21268381}{4067804} a^{16} - \frac{7531539}{1016951} a^{15} + \frac{35788341}{2033902} a^{14} + \frac{46870468}{1016951} a^{13} - \frac{305344553}{4067804} a^{12} - \frac{59371976}{1016951} a^{11} + \frac{49218561}{2033902} a^{10} + \frac{260358307}{1016951} a^{9} - \frac{287585332}{1016951} a^{8} + \frac{370157}{1781} a^{7} - \frac{1082759989}{2033902} a^{6} + \frac{857236124}{1016951} a^{5} - \frac{2537909865}{4067804} a^{4} + \frac{358106272}{1016951} a^{3} - \frac{258366549}{2033902} a^{2} + \frac{31942635}{1016951} a - \frac{12250665}{4067804} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110226.745818 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 18T36):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $S_3\wr C_2$ |
| Character table for $S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 9.3.82556485632.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.442368.1, 6.4.35831808.1 |
| Degree 9 sibling: | 9.3.82556485632.2 |
| Degree 12 siblings: | 12.6.41085390865563648.2, 12.2.41085390865563648.27, 12.0.15850845241344.1, 12.0.18786186952704.1, 12.0.1283918464548864.8, 12.0.169075682574336.1 |
| Degree 18 siblings: | Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.22.1 | $x^{8} + 8 x^{5} + 6 x^{4} + 16 x^{3} + 8 x^{2} + 12$ | $4$ | $2$ | $22$ | $D_4$ | $[3, 4]^{2}$ | |
| 2.8.22.1 | $x^{8} + 8 x^{5} + 6 x^{4} + 16 x^{3} + 8 x^{2} + 12$ | $4$ | $2$ | $22$ | $D_4$ | $[3, 4]^{2}$ | |
| 3 | Data not computed | ||||||