Normalized defining polynomial
\( x^{18} - 3 x^{16} - 18 x^{14} + 177 x^{12} + 1482 x^{10} + 3849 x^{8} + 2769 x^{6} - 4752 x^{4} - 5376 x^{2} + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-183593462369306069451078107136=-\,2^{24}\cdot 3^{20}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{4} a^{11} - \frac{1}{12} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12} a$, $\frac{1}{48} a^{14} - \frac{1}{16} a^{12} + \frac{1}{8} a^{10} - \frac{7}{48} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{5}{16} a^{4} - \frac{1}{2} a^{3} - \frac{23}{48} a^{2} - \frac{1}{2} a$, $\frac{1}{384} a^{15} - \frac{1}{96} a^{14} - \frac{1}{128} a^{13} + \frac{1}{32} a^{12} - \frac{3}{64} a^{11} + \frac{3}{16} a^{10} - \frac{79}{384} a^{9} - \frac{17}{96} a^{8} - \frac{9}{64} a^{7} - \frac{7}{16} a^{6} + \frac{3}{128} a^{5} - \frac{3}{32} a^{4} - \frac{47}{384} a^{3} + \frac{47}{96} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{1426643735040} a^{16} - \frac{1775924567}{285328747008} a^{14} - \frac{28510182529}{713321867520} a^{12} + \frac{14800982033}{1426643735040} a^{10} + \frac{36573066893}{713321867520} a^{8} + \frac{214369645097}{1426643735040} a^{6} - \frac{1}{2} a^{5} + \frac{108536472557}{285328747008} a^{4} - \frac{1}{2} a^{3} + \frac{7444141547}{22291308360} a^{2} - \frac{1}{2} a - \frac{2725691897}{5572827090}$, $\frac{1}{5706574940160} a^{17} + \frac{1196249881}{1141314988032} a^{15} - \frac{1}{96} a^{14} - \frac{50801490889}{2853287470080} a^{13} + \frac{1}{32} a^{12} - \frac{252694718287}{5706574940160} a^{11} + \frac{3}{16} a^{10} + \frac{519551414693}{2853287470080} a^{9} - \frac{17}{96} a^{8} + \frac{125204411657}{5706574940160} a^{7} - \frac{7}{16} a^{6} + \frac{277950416093}{1141314988032} a^{5} - \frac{3}{32} a^{4} + \frac{164453220863}{356660933760} a^{3} + \frac{47}{96} a^{2} - \frac{2756052721}{11145654180} a - \frac{1}{2}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{904899}{1387448320} a^{17} + \frac{316965}{277489664} a^{15} + \frac{10542771}{693724160} a^{13} - \frac{151023027}{1387448320} a^{11} - \frac{764564407}{693724160} a^{9} - \frac{4858652283}{1387448320} a^{7} - \frac{1242259623}{277489664} a^{5} - \frac{4617471}{43357760} a^{3} + \frac{21092943}{5419720} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7680092.907178393 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.3267.1, 3.1.1452.1, 3.1.108.1, 3.1.13068.1, 6.0.33732864.1, 6.0.683090496.4, 6.0.186624.1, 6.0.2732361984.1, 9.1.6694969951296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |