Normalized defining polynomial
\( x^{18} - 6 x^{17} + 6 x^{16} + 78 x^{15} - 48 x^{14} - 720 x^{13} + 27 x^{12} + 3312 x^{11} + 2754 x^{10} - 7740 x^{9} - 13158 x^{8} - 5742 x^{7} + 11037 x^{6} + 43218 x^{5} + 76230 x^{4} + 77742 x^{3} + 51030 x^{2} + 21546 x + 5061 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-182952862853086423052769558528=-\,2^{20}\cdot 3^{31}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{292005953060905039089750839425190278717582} a^{17} - \frac{3442915785440476765541220251357380696363}{292005953060905039089750839425190278717582} a^{16} - \frac{3119358719340192191619286818404660189921}{146002976530452519544875419712595139358791} a^{15} + \frac{60847074567673230560488874707236794219373}{146002976530452519544875419712595139358791} a^{14} - \frac{41780439761135742730555966093059270589621}{292005953060905039089750839425190278717582} a^{13} - \frac{72513707508872092097141266533503773521133}{292005953060905039089750839425190278717582} a^{12} - \frac{102233882121401411283266016940208807489495}{292005953060905039089750839425190278717582} a^{11} + \frac{113935097934632346899483557524719744627781}{292005953060905039089750839425190278717582} a^{10} + \frac{74064671370863461948271829621398778356373}{292005953060905039089750839425190278717582} a^{9} - \frac{143834269944856101978399002344280905180201}{292005953060905039089750839425190278717582} a^{8} - \frac{21571181326533260719043343536767554906359}{292005953060905039089750839425190278717582} a^{7} + \frac{9523074231859776402242155188090847536703}{292005953060905039089750839425190278717582} a^{6} + \frac{30834168899518439595901469482999116478745}{146002976530452519544875419712595139358791} a^{5} - \frac{22530850873780576148076738207223338670383}{146002976530452519544875419712595139358791} a^{4} + \frac{107587660807271430811721993089033381138105}{292005953060905039089750839425190278717582} a^{3} - \frac{8290260020138919600934887950511461309245}{22461996389300387622288526109630021439814} a^{2} - \frac{14827178708086484806636045630379935749706}{146002976530452519544875419712595139358791} a + \frac{25810004676749623701839325145625023522189}{146002976530452519544875419712595139358791}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{37788197852763681964107}{130546882060232385397969061} a^{17} - \frac{228144505759412027259246}{130546882060232385397969061} a^{16} + \frac{428526571198505758332269}{261093764120464770795938122} a^{15} + \frac{6212952493854431328700323}{261093764120464770795938122} a^{14} - \frac{2358457900098925832280984}{130546882060232385397969061} a^{13} - \frac{28111607660195548546333125}{130546882060232385397969061} a^{12} + \frac{11029614023889098390001723}{261093764120464770795938122} a^{11} + \frac{268868555816519667905362305}{261093764120464770795938122} a^{10} + \frac{151791722264373367200446357}{261093764120464770795938122} a^{9} - \frac{659479855899016189591974807}{261093764120464770795938122} a^{8} - \frac{893874208852113207988879263}{261093764120464770795938122} a^{7} - \frac{154553389294434056353051041}{261093764120464770795938122} a^{6} + \frac{790378537270642905808958721}{261093764120464770795938122} a^{5} + \frac{3311496328347994351403924631}{261093764120464770795938122} a^{4} + \frac{2626476280716153042156425922}{130546882060232385397969061} a^{3} + \frac{2319943808730944660401422873}{130546882060232385397969061} a^{2} + \frac{2703569894929037826216617463}{261093764120464770795938122} a + \frac{1034645245312121388255797441}{261093764120464770795938122} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12168177.008988433 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.756.1, 6.0.15431472.1, 6.0.1714608.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |