Normalized defining polynomial
\( x^{18} - 8 x^{17} + 33 x^{16} - 114 x^{15} + 383 x^{14} - 1156 x^{13} + 3191 x^{12} - 8326 x^{11} + 19412 x^{10} - 39456 x^{9} + 73892 x^{8} - 130472 x^{7} + 201816 x^{6} - 249352 x^{5} + 231552 x^{4} - 154816 x^{3} + 70784 x^{2} - 20064 x + 2736 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18294428062468623673667584=-\,2^{12}\cdot 7^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{5}{12} a^{5} + \frac{5}{12} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} + \frac{5}{12} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{24} a^{8} + \frac{1}{6} a^{7} + \frac{5}{24} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{8} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a$, $\frac{1}{144} a^{14} + \frac{1}{72} a^{13} - \frac{1}{48} a^{12} + \frac{1}{36} a^{11} + \frac{1}{48} a^{10} - \frac{1}{72} a^{9} + \frac{11}{144} a^{8} + \frac{1}{36} a^{7} + \frac{7}{36} a^{6} - \frac{7}{36} a^{5} - \frac{13}{36} a^{4} - \frac{1}{36} a^{2}$, $\frac{1}{1440} a^{15} + \frac{1}{360} a^{14} + \frac{5}{288} a^{13} + \frac{1}{90} a^{12} - \frac{49}{1440} a^{11} - \frac{5}{144} a^{10} - \frac{41}{1440} a^{9} - \frac{2}{45} a^{8} - \frac{103}{720} a^{6} - \frac{23}{120} a^{5} + \frac{7}{90} a^{4} + \frac{113}{360} a^{3} + \frac{31}{90} a^{2} + \frac{1}{3} a + \frac{3}{20}$, $\frac{1}{4320} a^{16} - \frac{11}{4320} a^{14} - \frac{1}{1080} a^{13} + \frac{7}{4320} a^{12} + \frac{11}{720} a^{11} - \frac{3}{160} a^{10} + \frac{1}{216} a^{9} - \frac{11}{180} a^{8} + \frac{457}{2160} a^{7} - \frac{43}{180} a^{6} + \frac{11}{45} a^{5} - \frac{17}{40} a^{4} + \frac{83}{270} a^{3} + \frac{53}{135} a^{2} + \frac{29}{180} a - \frac{1}{30}$, $\frac{1}{5841255867840} a^{17} - \frac{61264333}{584125586784} a^{16} + \frac{666851251}{5841255867840} a^{15} - \frac{3689448223}{2920627933920} a^{14} - \frac{116236643443}{5841255867840} a^{13} + \frac{2648915627}{1460313966960} a^{12} + \frac{54238309007}{1947085289280} a^{11} + \frac{5409473597}{584125586784} a^{10} + \frac{60853489577}{2920627933920} a^{9} - \frac{211857668867}{2920627933920} a^{8} - \frac{14143562783}{1460313966960} a^{7} + \frac{90660966097}{486771322320} a^{6} - \frac{53075472473}{162257107440} a^{5} - \frac{30236583101}{730156983480} a^{4} + \frac{71699295749}{146031396696} a^{3} + \frac{268725277531}{730156983480} a^{2} + \frac{596899219}{3202442910} a - \frac{490221533}{2134961940}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 229812.209675 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.1.3724.2 x3, 3.1.76.1 x3, 3.1.931.1 x3, 3.1.3724.1 x3, 6.0.263495344.2, 6.0.109744.2, 6.0.16468459.2, 6.0.263495344.1, 9.1.981256661056.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |