Normalized defining polynomial
\( x^{18} - 3 x^{17} + 11 x^{16} + 7 x^{15} - 24 x^{14} + 210 x^{13} - 77 x^{12} + 366 x^{11} + 1327 x^{10} - 1124 x^{9} + 6756 x^{8} - 5436 x^{7} + 13693 x^{6} - 7127 x^{5} + 12826 x^{4} - 3620 x^{3} + 5432 x^{2} - 322 x + 973 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18294428062468623673667584=-\,2^{12}\cdot 7^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{35} a^{15} - \frac{6}{35} a^{14} + \frac{12}{35} a^{13} + \frac{16}{35} a^{12} - \frac{4}{35} a^{11} + \frac{1}{35} a^{10} - \frac{2}{5} a^{9} - \frac{11}{35} a^{8} + \frac{1}{35} a^{7} - \frac{2}{35} a^{6} - \frac{13}{35} a^{5} + \frac{1}{7} a^{4} + \frac{13}{35} a^{3} + \frac{2}{5}$, $\frac{1}{63245} a^{16} + \frac{148}{63245} a^{15} + \frac{16973}{63245} a^{14} + \frac{5784}{63245} a^{13} + \frac{4363}{12649} a^{12} - \frac{5387}{12649} a^{11} - \frac{635}{1807} a^{10} + \frac{4133}{63245} a^{9} - \frac{15133}{63245} a^{8} + \frac{30462}{63245} a^{7} - \frac{19606}{63245} a^{6} + \frac{6613}{63245} a^{5} + \frac{20663}{63245} a^{4} - \frac{1594}{9035} a^{3} - \frac{469}{1807} a^{2} + \frac{1852}{9035} a - \frac{3}{65}$, $\frac{1}{1241205891621317761533344405} a^{17} - \frac{4775068737667124198894}{1241205891621317761533344405} a^{16} - \frac{378778358831172330090159}{95477376278562904733334185} a^{15} + \frac{77194875939977980451360022}{1241205891621317761533344405} a^{14} + \frac{41630949199592438584327648}{95477376278562904733334185} a^{13} - \frac{289446324557706644908080954}{1241205891621317761533344405} a^{12} + \frac{543170340103188298925344576}{1241205891621317761533344405} a^{11} + \frac{328252088487599470738627724}{1241205891621317761533344405} a^{10} + \frac{65690428324342088929478631}{177315127374473965933334915} a^{9} + \frac{87789668316726055885118357}{1241205891621317761533344405} a^{8} + \frac{355559153957073230223815341}{1241205891621317761533344405} a^{7} + \frac{427821958644919106107352728}{1241205891621317761533344405} a^{6} - \frac{524346324485423080451624916}{1241205891621317761533344405} a^{5} + \frac{303379318314555962111971691}{1241205891621317761533344405} a^{4} + \frac{23540539310895656467517898}{95477376278562904733334185} a^{3} - \frac{15888430855809991695505028}{177315127374473965933334915} a^{2} - \frac{28648105740317293757099646}{177315127374473965933334915} a + \frac{178916883389110691923589}{1275648398377510546282985}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56079.0358968 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.1.3724.2 x3, \(\Q(\zeta_{7})^+\), 6.0.263495344.2, 6.0.5377456.2 x2, 6.0.16468459.1, 9.3.51645087424.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.5377456.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |