Normalized defining polynomial
\( x^{18} - x^{17} - 2 x^{16} - 19 x^{15} + 85 x^{14} - 25 x^{13} - 387 x^{12} + 484 x^{11} + 1059 x^{10} - 845 x^{9} - 300 x^{8} - 100 x^{7} + 704 x^{6} - 257 x^{5} - 100 x^{4} + 20 x^{3} + 35 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18294428062468623673667584=-\,2^{12}\cdot 7^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{11} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{245} a^{15} + \frac{2}{245} a^{14} + \frac{3}{49} a^{13} + \frac{2}{35} a^{12} - \frac{3}{35} a^{11} + \frac{46}{245} a^{10} + \frac{24}{245} a^{9} + \frac{61}{245} a^{8} - \frac{58}{245} a^{7} + \frac{61}{245} a^{6} + \frac{111}{245} a^{5} - \frac{64}{245} a^{4} - \frac{96}{245} a^{3} + \frac{122}{245} a^{2} - \frac{12}{35} a - \frac{36}{245}$, $\frac{1}{10535} a^{16} - \frac{4}{2107} a^{15} - \frac{414}{10535} a^{14} + \frac{209}{10535} a^{13} + \frac{18}{1505} a^{12} - \frac{2397}{10535} a^{11} + \frac{4962}{10535} a^{10} - \frac{467}{10535} a^{9} + \frac{76}{301} a^{8} + \frac{691}{1505} a^{7} + \frac{1989}{10535} a^{6} + \frac{682}{1505} a^{5} - \frac{158}{10535} a^{4} - \frac{4626}{10535} a^{3} - \frac{3188}{10535} a^{2} - \frac{4103}{10535} a - \frac{2568}{10535}$, $\frac{1}{676519557436503445} a^{17} + \frac{8942239959764}{676519557436503445} a^{16} - \frac{490793146655324}{676519557436503445} a^{15} - \frac{45537615661689967}{676519557436503445} a^{14} - \frac{31473801622768523}{676519557436503445} a^{13} - \frac{46981982465730238}{676519557436503445} a^{12} + \frac{321698457300654124}{676519557436503445} a^{11} - \frac{3180426493757239}{676519557436503445} a^{10} - \frac{117429492737356598}{676519557436503445} a^{9} - \frac{138794772361708493}{676519557436503445} a^{8} - \frac{129116072791368153}{676519557436503445} a^{7} - \frac{41994335786936510}{135303911487300689} a^{6} - \frac{183801229821900962}{676519557436503445} a^{5} + \frac{233839149775778072}{676519557436503445} a^{4} + \frac{257697229475469053}{676519557436503445} a^{3} - \frac{9166487411462749}{135303911487300689} a^{2} + \frac{45250538563480616}{135303911487300689} a - \frac{146922164614550272}{676519557436503445}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31709.490295 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.1.3724.1 x3, \(\Q(\zeta_{7})^+\), 6.0.263495344.1, 6.0.5377456.1 x2, 6.0.16468459.1, 9.3.51645087424.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.5377456.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |