Normalized defining polynomial
\( x^{18} - x^{17} - 3 x^{16} + 8 x^{15} - 4 x^{13} + 40 x^{12} - 74 x^{11} - 3 x^{10} + 299 x^{9} - 181 x^{8} - 158 x^{7} + 506 x^{6} + 166 x^{5} + 86 x^{4} + 36 x^{3} + 9 x^{2} + x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18283008447003871936512=-\,2^{26}\cdot 3^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{10} - \frac{1}{9} a^{9} - \frac{1}{18} a^{8} - \frac{2}{9} a^{7} + \frac{1}{18} a^{6} - \frac{1}{9} a^{5} - \frac{1}{2} a^{4} + \frac{4}{9} a^{2} + \frac{1}{9} a + \frac{7}{18}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{11} - \frac{1}{9} a^{10} - \frac{1}{18} a^{9} + \frac{1}{9} a^{8} + \frac{7}{18} a^{7} - \frac{1}{9} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{18} a + \frac{1}{3}$, $\frac{1}{918} a^{16} + \frac{7}{918} a^{15} - \frac{11}{918} a^{14} - \frac{23}{306} a^{13} - \frac{1}{918} a^{12} + \frac{20}{153} a^{11} + \frac{73}{459} a^{10} - \frac{7}{918} a^{9} - \frac{35}{459} a^{8} + \frac{1}{27} a^{7} - \frac{86}{459} a^{6} + \frac{421}{918} a^{5} - \frac{265}{918} a^{4} - \frac{287}{918} a^{3} - \frac{397}{918} a^{2} - \frac{7}{17} a + \frac{361}{918}$, $\frac{1}{892443743838} a^{17} + \frac{116991155}{297481247946} a^{16} + \frac{917158316}{148740623973} a^{15} + \frac{94295551}{3734074242} a^{14} - \frac{206168921}{3734074242} a^{13} - \frac{37246972451}{892443743838} a^{12} + \frac{34480183991}{892443743838} a^{11} + \frac{764644733}{6466983651} a^{10} + \frac{36867991495}{297481247946} a^{9} - \frac{28510051646}{446221871919} a^{8} + \frac{355141804543}{892443743838} a^{7} - \frac{19754763872}{446221871919} a^{6} - \frac{27112564195}{446221871919} a^{5} + \frac{157817220161}{892443743838} a^{4} + \frac{10089029663}{38801901906} a^{3} + \frac{162334114921}{892443743838} a^{2} - \frac{162094802527}{446221871919} a - \frac{25895071651}{892443743838}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3624966722}{26248345407} a^{17} + \frac{699944263}{2916482823} a^{16} + \frac{2844671768}{8749448469} a^{15} - \frac{156287396}{109825713} a^{14} + \frac{84953176}{109825713} a^{13} + \frac{17157904432}{26248345407} a^{12} - \frac{155269516996}{26248345407} a^{11} + \frac{5409210236}{380410803} a^{10} - \frac{19355383378}{2916482823} a^{9} - \frac{1115445049474}{26248345407} a^{8} + \frac{1450174831468}{26248345407} a^{7} + \frac{192424131008}{26248345407} a^{6} - \frac{2307495793820}{26248345407} a^{5} + \frac{664545306056}{26248345407} a^{4} + \frac{13389354656}{1141232409} a^{3} + \frac{185544828760}{26248345407} a^{2} + \frac{32238400738}{26248345407} a + \frac{29430407450}{26248345407} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19737.264553893918 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1176.1, 3.1.588.1 x3, 6.0.4148928.1, 6.0.1037232.1, 9.1.78066229248.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |