Normalized defining polynomial
\( x^{18} - 2 x^{17} + 173 x^{16} - 330 x^{15} + 14429 x^{14} - 23330 x^{13} + 755082 x^{12} - 929854 x^{11} + 27080080 x^{10} - 22449952 x^{9} + 685380987 x^{8} - 317287568 x^{7} + 12167724659 x^{6} - 2095429314 x^{5} + 145194850029 x^{4} + 2023454274 x^{3} + 1048817590026 x^{2} + 78764845432 x + 3461536818169 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-182535844857539433056785809958362947780608=-\,2^{33}\cdot 11^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $196.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{17} + \frac{423917774221791766305567120335939426822633154960080683034334713331717}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{16} + \frac{205825729258666669149653981371024569596931547235176975886785080243730}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{15} - \frac{91582083532097588110117928059059629198541074006948281696482117172417}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{14} - \frac{344935016780968538272003164700728703454179713580434785775709845838823}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{13} - \frac{565269623746611218858694555289445517660038504649370929338787724431787}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{12} + \frac{222172105163258767654773993588848055232233324857477059488691707608540}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{11} + \frac{315002734378703514943905998627008022928274735212136586527972917868469}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{10} + \frac{253781177431505027188255608653361423101959186798088900570768823022726}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{9} - \frac{337012436085381796284689797560603079519893987154670928980912238217149}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{8} + \frac{582846020734389541375021443969266352416034108331675709173971349462705}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{7} + \frac{879892077348781320976841313427986168397460016301948214670776768906465}{1961497683856273150122864445482830727117082289582085068160885682081501} a^{6} + \frac{1384877401761272499502292354058413117651163108653074367413534638624133}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{5} + \frac{112795846489746878988413078484563683987985036334412576919095397362181}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{4} + \frac{1297814475626224129481755110148901550274451370380499272527513468089359}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{3} + \frac{709325330246043610197361220518854321437126735497111232519490329280841}{3922995367712546300245728890965661454234164579164170136321771364163002} a^{2} - \frac{553571818354238525868597694624065087468853677262145600873429351404455}{3922995367712546300245728890965661454234164579164170136321771364163002} a - \frac{160501120836131335490972284544332134028182396992323177995258464358521}{1961497683856273150122864445482830727117082289582085068160885682081501}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{14}\times C_{270774}$, which has order $30326688$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-22}) \), 3.3.1369.1, 3.3.148.1, 6.0.3731740672.7, 6.0.1277188244992.3, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |