Normalized defining polynomial
\( x^{18} - 6 x^{15} + 86 x^{14} + 178 x^{13} + 18 x^{12} - 2090 x^{11} - 4099 x^{10} + 1120 x^{9} + 26834 x^{8} + 50102 x^{7} + 22565 x^{6} - 102816 x^{5} - 151144 x^{4} - 16740 x^{3} + 357604 x^{2} + 461656 x + 297992 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-181886611880788099149343227904=-\,2^{18}\cdot 97^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{582} a^{15} - \frac{18}{97} a^{14} + \frac{8}{291} a^{13} + \frac{101}{582} a^{12} + \frac{65}{582} a^{10} - \frac{7}{291} a^{9} + \frac{11}{97} a^{8} - \frac{89}{582} a^{7} + \frac{17}{97} a^{6} - \frac{47}{97} a^{5} + \frac{8}{291} a^{4} - \frac{85}{582} a^{3} - \frac{53}{582} a^{2} - \frac{101}{291}$, $\frac{1}{330217870956} a^{16} + \frac{41484317}{82554467739} a^{15} - \frac{24816591667}{165108935478} a^{14} - \frac{12482462479}{165108935478} a^{13} + \frac{14204055533}{165108935478} a^{12} - \frac{12879262114}{82554467739} a^{11} + \frac{19236886127}{82554467739} a^{10} - \frac{511373953}{82554467739} a^{9} + \frac{11925186649}{330217870956} a^{8} + \frac{1283998207}{165108935478} a^{7} + \frac{16693768063}{55036311826} a^{6} + \frac{16685008487}{165108935478} a^{5} - \frac{32733401489}{330217870956} a^{4} - \frac{78442321343}{165108935478} a^{3} + \frac{45606412609}{165108935478} a^{2} + \frac{25391960822}{82554467739} a + \frac{12270092581}{82554467739}$, $\frac{1}{15283877065187024383320876315252} a^{17} - \frac{33935730793488363}{26397024292205568883110321788} a^{16} + \frac{2544087272129293626098758}{19797768219154176662332741341} a^{15} - \frac{985854968231537050702028525159}{7641938532593512191660438157626} a^{14} + \frac{555200014347195021305769680189}{2547312844197837397220146052542} a^{13} + \frac{912248336329656515309237328584}{3820969266296756095830219078813} a^{12} + \frac{35670177498622384355765682311}{7641938532593512191660438157626} a^{11} - \frac{288931727190098850643300767134}{1273656422098918698610073026271} a^{10} - \frac{2375700778252404829402379733989}{15283877065187024383320876315252} a^{9} - \frac{929418683921919706949221786359}{5094625688395674794440292105084} a^{8} - \frac{4470991921409010124951141609}{134069097063044073537902423818} a^{7} - \frac{41136734332873592668563659417}{3820969266296756095830219078813} a^{6} + \frac{6555647138451884412312636483791}{15283877065187024383320876315252} a^{5} + \frac{3725659569036246945454612295071}{15283877065187024383320876315252} a^{4} - \frac{12218891001509801138111545059}{2547312844197837397220146052542} a^{3} - \frac{1451940308983272815853503714497}{3820969266296756095830219078813} a^{2} + \frac{270242603329262179163033863700}{1273656422098918698610073026271} a + \frac{104599574769077391935619629}{6599256073051392220777580447}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{262772347500904124}{13468708441167459610197} a^{17} + \frac{660483232590877}{69786054099313262229} a^{16} + \frac{637590621589554}{23262018033104420743} a^{15} + \frac{275814076250056216}{4489569480389153203399} a^{14} - \frac{23506331866165775597}{13468708441167459610197} a^{13} - \frac{23907037205010450731}{8979138960778306406798} a^{12} + \frac{17226821748187793237}{4489569480389153203399} a^{11} + \frac{1101247547595769372573}{26937416882334919220394} a^{10} + \frac{445660355879809803873}{8979138960778306406798} a^{9} - \frac{2853057155641720287973}{26937416882334919220394} a^{8} - \frac{353098498140368006959}{708879391640392611063} a^{7} - \frac{6662143721729295230312}{13468708441167459610197} a^{6} + \frac{3960947796725685247857}{8979138960778306406798} a^{5} + \frac{52287719296288435178209}{26937416882334919220394} a^{4} + \frac{17819099423409981041179}{26937416882334919220394} a^{3} - \frac{32202519276020250310577}{13468708441167459610197} a^{2} - \frac{66629354318518059330445}{13468708441167459610197} a - \frac{172033821085040243135}{69786054099313262229} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1883402.18484 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.37636.1 x3, 3.3.9409.1, 6.0.5665873984.1, 6.0.5665873984.2, 6.0.602176.1 x2, 9.3.53310208315456.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.602176.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $97$ | 97.3.2.1 | $x^{3} - 97$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 97.3.2.1 | $x^{3} - 97$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.3.2.1 | $x^{3} - 97$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.3.2.1 | $x^{3} - 97$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.3.2.1 | $x^{3} - 97$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.3.2.1 | $x^{3} - 97$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |