Normalized defining polynomial
\( x^{18} - 6 x^{17} + 24 x^{16} - 72 x^{15} + 162 x^{14} - 282 x^{13} + 465 x^{12} - 732 x^{11} + 1029 x^{10} - 1198 x^{9} + 1134 x^{8} - 516 x^{7} + 48 x^{6} - 90 x^{5} + 453 x^{4} + 72 x^{3} + 120 x^{2} - 120 x + 20 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18075490334784000000000000=-\,2^{18}\cdot 3^{24}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{80} a^{14} + \frac{1}{20} a^{13} - \frac{1}{40} a^{12} + \frac{1}{80} a^{10} + \frac{9}{40} a^{9} + \frac{13}{80} a^{8} + \frac{3}{40} a^{7} + \frac{1}{40} a^{6} - \frac{11}{40} a^{5} - \frac{23}{80} a^{4} + \frac{3}{40} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{160} a^{15} - \frac{1}{160} a^{14} + \frac{1}{20} a^{13} - \frac{1}{16} a^{12} + \frac{1}{160} a^{11} + \frac{13}{160} a^{10} + \frac{33}{160} a^{9} + \frac{21}{160} a^{8} + \frac{11}{80} a^{7} + \frac{1}{20} a^{6} - \frac{73}{160} a^{5} + \frac{21}{160} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{1600} a^{16} - \frac{1}{800} a^{15} - \frac{3}{1600} a^{14} + \frac{17}{800} a^{13} - \frac{1}{320} a^{12} - \frac{7}{400} a^{11} - \frac{3}{25} a^{10} - \frac{11}{200} a^{9} + \frac{57}{320} a^{8} - \frac{93}{800} a^{7} + \frac{43}{320} a^{6} - \frac{321}{800} a^{5} - \frac{5}{64} a^{4} + \frac{91}{200} a^{3} + \frac{33}{80} a^{2} + \frac{3}{8} a - \frac{21}{80}$, $\frac{1}{4140256374400} a^{17} + \frac{1281184119}{4140256374400} a^{16} - \frac{536414349}{828051274880} a^{15} + \frac{10538938931}{4140256374400} a^{14} - \frac{9882325451}{4140256374400} a^{13} - \frac{198546744353}{4140256374400} a^{12} + \frac{8575271883}{103506409360} a^{11} + \frac{17731350787}{207012818720} a^{10} + \frac{12689530589}{78118044800} a^{9} + \frac{685278657279}{4140256374400} a^{8} + \frac{239460883869}{4140256374400} a^{7} + \frac{897525705293}{4140256374400} a^{6} + \frac{1878412251773}{4140256374400} a^{5} + \frac{1914262278023}{4140256374400} a^{4} - \frac{72176433423}{1035064093600} a^{3} - \frac{43215921237}{207012818720} a^{2} + \frac{2971053049}{207012818720} a + \frac{45348441879}{207012818720}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1315307643}{1562360896} a^{17} + \frac{7521227991}{1562360896} a^{16} - \frac{29446607019}{1562360896} a^{15} + \frac{86395513041}{1562360896} a^{14} - \frac{188700989199}{1562360896} a^{13} + \frac{317650854795}{1562360896} a^{12} - \frac{260962590783}{781180448} a^{11} + \frac{407756093727}{781180448} a^{10} - \frac{1123421842417}{1562360896} a^{9} + \frac{1258874723913}{1562360896} a^{8} - \frac{1136607763323}{1562360896} a^{7} + \frac{358785288213}{1562360896} a^{6} + \frac{36834390063}{1562360896} a^{5} + \frac{131551297425}{1562360896} a^{4} - \frac{140551176435}{390590224} a^{3} - \frac{62931269205}{390590224} a^{2} - \frac{56936543625}{390590224} a + \frac{23595617093}{390590224} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2143781.2150954185 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.675.1, 3.3.2700.1, 6.0.1166400.3 x2, 6.0.29160000.1, 6.0.29160000.2, 9.3.531441000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |