Normalized defining polynomial
\( x^{18} + 24 x^{16} - 6 x^{15} + 387 x^{14} + 6 x^{13} + 3941 x^{12} - 36 x^{11} + 28167 x^{10} + 5912 x^{9} + 163782 x^{8} + 50502 x^{7} + 623048 x^{6} + 233514 x^{5} + 2503317 x^{4} + 2370846 x^{3} + 8823831 x^{2} + 5384334 x + 8256151 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-179966054889983269121047526375424=-\,2^{27}\cdot 3^{24}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(325,·)$, $\chi_{504}(193,·)$, $\chi_{504}(457,·)$, $\chi_{504}(13,·)$, $\chi_{504}(397,·)$, $\chi_{504}(337,·)$, $\chi_{504}(25,·)$, $\chi_{504}(349,·)$, $\chi_{504}(289,·)$, $\chi_{504}(229,·)$, $\chi_{504}(169,·)$, $\chi_{504}(493,·)$, $\chi_{504}(157,·)$, $\chi_{504}(181,·)$, $\chi_{504}(361,·)$, $\chi_{504}(121,·)$, $\chi_{504}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{41969875493740783684} a^{16} - \frac{297456961923123423}{10492468873435195921} a^{15} - \frac{620459013753054487}{20984937746870391842} a^{14} + \frac{590875696581089586}{10492468873435195921} a^{13} + \frac{303933101644963143}{20984937746870391842} a^{12} + \frac{809532726747411465}{10492468873435195921} a^{11} - \frac{4050505943805003441}{20984937746870391842} a^{10} - \frac{655854756669851719}{10492468873435195921} a^{9} + \frac{6652459431273458843}{41969875493740783684} a^{8} + \frac{485237110132676550}{10492468873435195921} a^{7} - \frac{2124939351041494186}{10492468873435195921} a^{6} + \frac{2316488084517721914}{10492468873435195921} a^{5} + \frac{14505828403085056211}{41969875493740783684} a^{4} + \frac{1324264064964563399}{10492468873435195921} a^{3} - \frac{3449307125438538731}{10492468873435195921} a^{2} + \frac{4241254469967259423}{10492468873435195921} a + \frac{5041860582745362311}{10492468873435195921}$, $\frac{1}{45900619160664112420296050398436} a^{17} + \frac{191318174417}{45900619160664112420296050398436} a^{16} - \frac{567544080747278198660178691813}{11475154790166028105074012599609} a^{15} - \frac{16280043086820325266359808062}{161621898453042649367239614079} a^{14} + \frac{1829000370752809026438558472245}{22950309580332056210148025199218} a^{13} - \frac{2465242001594984743265784326891}{22950309580332056210148025199218} a^{12} + \frac{5232835884139846096586448879349}{22950309580332056210148025199218} a^{11} + \frac{1189785454922866881361103493119}{22950309580332056210148025199218} a^{10} - \frac{5897911344055222032216884265997}{45900619160664112420296050398436} a^{9} - \frac{4541294937546015183895035244733}{45900619160664112420296050398436} a^{8} - \frac{3426219857303767804353497953277}{22950309580332056210148025199218} a^{7} - \frac{5356870009666279703149743871519}{22950309580332056210148025199218} a^{6} - \frac{17087418435758115966395315390853}{45900619160664112420296050398436} a^{5} - \frac{8399594902862514948991535702953}{45900619160664112420296050398436} a^{4} - \frac{4601025035081512425724181559471}{22950309580332056210148025199218} a^{3} + \frac{10748280237816244629211680115139}{22950309580332056210148025199218} a^{2} - \frac{4368350171864469639073389919285}{11475154790166028105074012599609} a + \frac{4725337256143940810400250705736}{11475154790166028105074012599609}$
Class group and class number
$C_{2}\times C_{18}\times C_{252}$, which has order $9072$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.0.1152216576.2, 6.0.8605184.1, 6.0.56458612224.1, 6.0.56458612224.2, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||