Normalized defining polynomial
\( x^{18} - 9 x^{17} + 47 x^{16} - 172 x^{15} + 548 x^{14} - 1540 x^{13} + 3670 x^{12} - 7174 x^{11} + 12609 x^{10} - 20783 x^{9} + 28227 x^{8} - 27838 x^{7} + 33492 x^{6} - 52450 x^{5} + 33052 x^{4} + 11642 x^{3} - 27707 x^{2} + 14385 x + 11025 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17957500407834968547439685632=-\,2^{12}\cdot 547^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{5}{12} a^{5} - \frac{1}{12} a^{4} + \frac{1}{3} a^{3} + \frac{1}{12} a^{2} + \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{5}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{4}$, $\frac{1}{36} a^{12} + \frac{1}{36} a^{9} + \frac{1}{36} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{7}{36} a^{5} - \frac{1}{4} a^{4} + \frac{2}{9} a^{3} - \frac{1}{18} a^{2} + \frac{1}{36} a + \frac{1}{6}$, $\frac{1}{36} a^{13} + \frac{1}{36} a^{10} + \frac{1}{36} a^{9} + \frac{1}{18} a^{8} + \frac{1}{9} a^{7} - \frac{1}{36} a^{6} - \frac{5}{12} a^{5} + \frac{7}{18} a^{4} - \frac{2}{9} a^{3} - \frac{11}{36} a^{2}$, $\frac{1}{360} a^{14} + \frac{1}{120} a^{13} - \frac{1}{90} a^{12} - \frac{1}{72} a^{11} - \frac{11}{360} a^{10} - \frac{13}{180} a^{9} + \frac{1}{24} a^{8} + \frac{3}{40} a^{7} + \frac{77}{360} a^{6} + \frac{7}{60} a^{5} - \frac{101}{360} a^{4} - \frac{97}{360} a^{3} - \frac{7}{90} a^{2} - \frac{13}{360} a + \frac{5}{24}$, $\frac{1}{360} a^{15} - \frac{1}{120} a^{13} - \frac{1}{120} a^{12} + \frac{1}{90} a^{11} - \frac{13}{360} a^{10} + \frac{1}{120} a^{9} + \frac{11}{180} a^{8} - \frac{11}{90} a^{7} - \frac{89}{360} a^{6} + \frac{23}{360} a^{5} - \frac{37}{180} a^{4} + \frac{163}{360} a^{3} + \frac{131}{360} a^{2} + \frac{37}{180} a - \frac{1}{24}$, $\frac{1}{269521509600} a^{16} - \frac{1}{33690188700} a^{15} + \frac{106238309}{134760754800} a^{14} - \frac{106238299}{19251536400} a^{13} - \frac{22458281}{16845094350} a^{12} - \frac{96876077}{26952150960} a^{11} - \frac{1908502091}{67380377400} a^{10} - \frac{1825163671}{33690188700} a^{9} - \frac{641553521}{7700614560} a^{8} + \frac{41943257}{3850307280} a^{7} - \frac{6458996681}{33690188700} a^{6} + \frac{18234552491}{67380377400} a^{5} - \frac{904964303}{8422547175} a^{4} + \frac{366791497}{5390430192} a^{3} - \frac{5822459243}{19251536400} a^{2} + \frac{956874283}{5390430192} a + \frac{41386849}{513374304}$, $\frac{1}{687010327970400} a^{17} + \frac{211}{114501721328400} a^{16} + \frac{384923055253}{343505163985200} a^{15} + \frac{5286705023}{16357388761200} a^{14} - \frac{7694716129}{4293814549815} a^{13} - \frac{36780171199}{114501721328400} a^{12} - \frac{1368517900231}{171752581992600} a^{11} + \frac{1558410777953}{57250860664200} a^{10} - \frac{191859183469}{10904925840800} a^{9} - \frac{110099695867}{1635738876120} a^{8} + \frac{17149632017129}{85876290996300} a^{7} - \frac{92282650969}{9541810110700} a^{6} - \frac{6634216083527}{17175258199260} a^{5} - \frac{17974476041833}{38167240442800} a^{4} - \frac{16000473177343}{49072166283600} a^{3} + \frac{24462101355187}{114501721328400} a^{2} - \frac{464072683049}{19628866513440} a - \frac{179874008521}{654295550448}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2377204.5255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-547}) \), 3.1.2188.1 x3, 3.1.2188.2 x3, 3.1.2188.3 x3, 3.1.547.1 x3, 6.0.2618677168.3, 6.0.2618677168.2, 6.0.2618677168.1, 6.0.163667323.1, 9.1.5729665643584.2 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 547 | Data not computed | ||||||