Normalized defining polynomial
\( x^{18} - x^{17} + 191 x^{16} - 191 x^{15} + 15391 x^{14} - 15391 x^{13} + 680391 x^{12} - 680391 x^{11} + 17970391 x^{10} - 17970391 x^{9} + 289670391 x^{8} - 289670391 x^{7} + 2797670391 x^{6} - 2797670391 x^{5} + 15337670391 x^{4} - 15337670391 x^{3} + 43837670391 x^{2} - 43837670391 x + 62837670391 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1794179650728830182319895880000714379=-\,19^{17}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(779=19\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{779}(1,·)$, $\chi_{779}(450,·)$, $\chi_{779}(329,·)$, $\chi_{779}(778,·)$, $\chi_{779}(204,·)$, $\chi_{779}(206,·)$, $\chi_{779}(657,·)$, $\chi_{779}(83,·)$, $\chi_{779}(409,·)$, $\chi_{779}(737,·)$, $\chi_{779}(739,·)$, $\chi_{779}(40,·)$, $\chi_{779}(42,·)$, $\chi_{779}(370,·)$, $\chi_{779}(696,·)$, $\chi_{779}(122,·)$, $\chi_{779}(573,·)$, $\chi_{779}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{9863177171} a^{10} + \frac{3741615072}{9863177171} a^{9} + \frac{100}{9863177171} a^{8} + \frac{1397332666}{9863177171} a^{7} + \frac{3500}{9863177171} a^{6} + \frac{2467271296}{9863177171} a^{5} + \frac{50000}{9863177171} a^{4} - \frac{4367223151}{9863177171} a^{3} + \frac{250000}{9863177171} a^{2} - \frac{3238492282}{9863177171} a + \frac{200000}{9863177171}$, $\frac{1}{9863177171} a^{11} + \frac{110}{9863177171} a^{9} + \frac{2036557964}{9863177171} a^{8} + \frac{4400}{9863177171} a^{7} - \frac{4749374787}{9863177171} a^{6} + \frac{77000}{9863177171} a^{5} - \frac{376243623}{9863177171} a^{4} + \frac{550000}{9863177171} a^{3} - \frac{3009948984}{9863177171} a^{2} + \frac{1100000}{9863177171} a - \frac{3762436230}{9863177171}$, $\frac{1}{9863177171} a^{12} + \frac{4712341226}{9863177171} a^{9} - \frac{6600}{9863177171} a^{8} - \frac{645133311}{9863177171} a^{7} - \frac{308000}{9863177171} a^{6} + \frac{4392874605}{9863177171} a^{5} - \frac{4950000}{9863177171} a^{4} + \frac{3952093418}{9863177171} a^{3} - \frac{26400000}{9863177171} a^{2} - \frac{2602663366}{9863177171} a - \frac{22000000}{9863177171}$, $\frac{1}{9863177171} a^{13} - \frac{7800}{9863177171} a^{9} + \frac{1553248297}{9863177171} a^{8} - \frac{416000}{9863177171} a^{7} + \frac{2430813517}{9863177171} a^{6} - \frac{8190000}{9863177171} a^{5} - \frac{1532945734}{9863177171} a^{4} - \frac{62400000}{9863177171} a^{3} - \frac{438327613}{9863177171} a^{2} - \frac{130000000}{9863177171} a - \frac{2213802266}{9863177171}$, $\frac{1}{9863177171} a^{14} + \frac{1009560908}{9863177171} a^{9} + \frac{364000}{9863177171} a^{8} + \frac{2814834362}{9863177171} a^{7} + \frac{19110000}{9863177171} a^{6} + \frac{124502445}{9863177171} a^{5} + \frac{327600000}{9863177171} a^{4} + \frac{2635043221}{9863177171} a^{3} + \frac{1820000000}{9863177171} a^{2} - \frac{2856866935}{9863177171} a + \frac{1560000000}{9863177171}$, $\frac{1}{9863177171} a^{15} + \frac{455000}{9863177171} a^{9} + \frac{490515272}{9863177171} a^{8} + \frac{27300000}{9863177171} a^{7} - \frac{2321248337}{9863177171} a^{6} + \frac{573300000}{9863177171} a^{5} + \frac{4330404399}{9863177171} a^{4} + \frac{4550000000}{9863177171} a^{3} - \frac{4243238216}{9863177171} a^{2} - \frac{113177171}{9863177171} a - \frac{3081732459}{9863177171}$, $\frac{1}{9863177171} a^{16} - \frac{671644273}{9863177171} a^{9} - \frac{18200000}{9863177171} a^{8} + \frac{1579341494}{9863177171} a^{7} - \frac{1019200000}{9863177171} a^{6} + \frac{2989973277}{9863177171} a^{5} + \frac{1526354342}{9863177171} a^{4} - \frac{2698288731}{9863177171} a^{3} + \frac{4494948881}{9863177171} a^{2} + \frac{1553115996}{9863177171} a - \frac{2231405461}{9863177171}$, $\frac{1}{9863177171} a^{17} - \frac{23800000}{9863177171} a^{9} - \frac{298471403}{9863177171} a^{8} - \frac{1523200000}{9863177171} a^{7} - \frac{3554415092}{9863177171} a^{6} - \frac{3730468487}{9863177171} a^{5} - \frac{4602905986}{9863177171} a^{4} + \frac{4168960788}{9863177171} a^{3} + \frac{1893206892}{9863177171} a^{2} - \frac{3209369740}{9863177171} a + \frac{2244708151}{9863177171}$
Class group and class number
$C_{934990}$, which has order $934990$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.895079162343 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-779}) \), 3.3.361.1, 6.0.170655219179.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 41 | Data not computed | ||||||