Normalized defining polynomial
\( x^{18} - 4 x^{17} - 40 x^{16} + 248 x^{15} + 1161 x^{14} - 9892 x^{13} + 23362 x^{12} + 72448 x^{11} - 374940 x^{10} + 317616 x^{9} + 3876760 x^{8} - 20356032 x^{7} + 62210208 x^{6} - 129573632 x^{5} + 211472512 x^{4} - 254183424 x^{3} + 245058048 x^{2} - 152907776 x + 74063872 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-179124115636167311134377199898019495936=-\,2^{18}\cdot 3^{9}\cdot 7^{14}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} + \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{64} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{1}{64} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} + \frac{3}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{256} a^{12} - \frac{1}{128} a^{11} - \frac{3}{128} a^{10} + \frac{1}{64} a^{9} + \frac{13}{256} a^{8} - \frac{5}{128} a^{7} - \frac{1}{64} a^{6} + \frac{1}{16} a^{5} + \frac{11}{64} a^{4} - \frac{5}{32} a^{3} + \frac{1}{16} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{512} a^{13} - \frac{1}{256} a^{11} - \frac{1}{64} a^{10} + \frac{5}{512} a^{9} + \frac{1}{32} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{5}{128} a^{5} + \frac{3}{32} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{1024} a^{14} - \frac{1}{512} a^{12} - \frac{1}{128} a^{11} + \frac{5}{1024} a^{10} + \frac{1}{64} a^{9} + \frac{3}{64} a^{8} - \frac{7}{128} a^{7} + \frac{11}{256} a^{6} - \frac{1}{64} a^{5} + \frac{1}{32} a^{4} - \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{2048} a^{15} + \frac{1}{2048} a^{11} + \frac{1}{128} a^{10} - \frac{3}{1024} a^{9} + \frac{5}{128} a^{8} + \frac{3}{512} a^{7} - \frac{3}{64} a^{6} + \frac{23}{256} a^{5} + \frac{3}{32} a^{4} - \frac{3}{16} a^{3} + \frac{3}{16} a^{2} - \frac{5}{16} a - \frac{1}{4}$, $\frac{1}{4096} a^{16} + \frac{1}{4096} a^{12} + \frac{1}{256} a^{11} + \frac{61}{2048} a^{10} - \frac{3}{256} a^{9} - \frac{29}{1024} a^{8} - \frac{7}{128} a^{7} + \frac{23}{512} a^{6} + \frac{7}{64} a^{5} + \frac{5}{32} a^{4} + \frac{3}{32} a^{3} - \frac{13}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{19799808230180275282745219408840812180329562112} a^{17} - \frac{117819862403442419786537862563832922548623}{9899904115090137641372609704420406090164781056} a^{16} - \frac{726826913105336687789073844460936370465615}{4949952057545068820686304852210203045082390528} a^{15} - \frac{105125199232817418447335390781581227751129}{1237488014386267205171576213052550761270597632} a^{14} - \frac{11642340937908384918814570619573020112058327}{19799808230180275282745219408840812180329562112} a^{13} + \frac{9838942112560203970449265513665253768742777}{9899904115090137641372609704420406090164781056} a^{12} - \frac{4745837412854672261608031514052958033380665}{9899904115090137641372609704420406090164781056} a^{11} - \frac{75980457245863174233866201843533977344251491}{4949952057545068820686304852210203045082390528} a^{10} - \frac{119915460647439093283388549893005061952378281}{4949952057545068820686304852210203045082390528} a^{9} + \frac{55904096081813445105700050987107339190329819}{2474976028772534410343152426105101522541195264} a^{8} + \frac{41662872439699468107391736664514792453745061}{2474976028772534410343152426105101522541195264} a^{7} - \frac{31893462507597603912125895230415399090208725}{1237488014386267205171576213052550761270597632} a^{6} + \frac{4060718130505068322186195497079554854529303}{309372003596566801292894053263137690317649408} a^{5} - \frac{19674457054346402418507102422880320850084309}{154686001798283400646447026631568845158824704} a^{4} + \frac{19402087749501430330349605802764399814933635}{154686001798283400646447026631568845158824704} a^{3} + \frac{35312976841296971576141301924681589209037513}{77343000899141700323223513315784422579412352} a^{2} + \frac{1758472426602499591852677931196426795252259}{4833937556196356270201469582236526411213272} a - \frac{81719484520694631776240423804919778332711}{4833937556196356270201469582236526411213272}$
Class group and class number
$C_{12}\times C_{86868}$, which has order $1042416$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1090042674.5636587 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.8281.1, 3.3.28392.1, 6.0.24069811311.1, 6.0.31438120896.4, 9.9.54951571781503488.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 13 | Data not computed | ||||||