Normalized defining polynomial
\( x^{18} - 7 x^{17} + 60 x^{16} - 170 x^{15} + 1392 x^{14} - 4613 x^{13} + 24354 x^{12} - 23677 x^{11} + 48833 x^{10} - 35038 x^{9} + 59244 x^{8} - 39753 x^{7} + 33797 x^{6} - 10244 x^{5} + 1771 x^{4} - 295 x^{3} + 43 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-179099310176045734691646526162025107=-\,37^{12}\cdot 67^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1363} a^{15} - \frac{135}{1363} a^{14} - \frac{499}{1363} a^{13} - \frac{182}{1363} a^{12} + \frac{86}{1363} a^{11} - \frac{477}{1363} a^{10} - \frac{509}{1363} a^{9} + \frac{594}{1363} a^{8} + \frac{436}{1363} a^{7} - \frac{414}{1363} a^{6} + \frac{111}{1363} a^{5} + \frac{518}{1363} a^{4} + \frac{316}{1363} a^{3} + \frac{439}{1363} a^{2} - \frac{264}{1363} a + \frac{176}{1363}$, $\frac{1}{42253} a^{16} - \frac{12}{42253} a^{15} + \frac{14245}{42253} a^{14} - \frac{17943}{42253} a^{13} - \frac{5944}{42253} a^{12} + \frac{12827}{42253} a^{11} - \frac{14201}{42253} a^{10} - \frac{3404}{42253} a^{9} + \frac{12163}{42253} a^{8} + \frac{57}{42253} a^{7} - \frac{364}{1363} a^{6} + \frac{1904}{42253} a^{5} - \frac{5483}{42253} a^{4} - \frac{16576}{42253} a^{3} + \frac{14206}{42253} a^{2} + \frac{585}{1363} a + \frac{12107}{42253}$, $\frac{1}{29707534199807400418280526569} a^{17} + \frac{193602208962201737745741}{29707534199807400418280526569} a^{16} + \frac{9954924776602142883909698}{29707534199807400418280526569} a^{15} + \frac{3825495566074968431659986063}{29707534199807400418280526569} a^{14} + \frac{10333069659350867155456918496}{29707534199807400418280526569} a^{13} + \frac{11012808812179769161389095175}{29707534199807400418280526569} a^{12} - \frac{9915899388090628718073233483}{29707534199807400418280526569} a^{11} + \frac{10255124378013430468823596587}{29707534199807400418280526569} a^{10} - \frac{8243733830691599103835774014}{29707534199807400418280526569} a^{9} + \frac{9113404155571082404965123220}{29707534199807400418280526569} a^{8} - \frac{10079007309389786868799487619}{29707534199807400418280526569} a^{7} - \frac{348531502670338907374437741}{29707534199807400418280526569} a^{6} + \frac{472813969516442407821387208}{29707534199807400418280526569} a^{5} + \frac{8602147778106207010660742430}{29707534199807400418280526569} a^{4} + \frac{897794653375436072621173362}{29707534199807400418280526569} a^{3} - \frac{12555736724441240379356603323}{29707534199807400418280526569} a^{2} + \frac{3347968422830391340545599194}{29707534199807400418280526569} a - \frac{13467964112970475537831603186}{29707534199807400418280526569}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{344}$, which has order $44032$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 424333.045004 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 3.1.91723.1 x3, 3.3.1369.1, 6.0.563678284843.1, 6.0.411744547.2 x2, 6.0.563678284843.4, 9.3.771675571950067.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.411744547.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $67$ | 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |