Normalized defining polynomial
\( x^{18} - 6 x^{17} + 105 x^{16} - 470 x^{15} + 5088 x^{14} - 19992 x^{13} + 150340 x^{12} - 481404 x^{11} + 2729481 x^{10} - 7706476 x^{9} + 37870875 x^{8} - 94591272 x^{7} + 340487281 x^{6} - 646277772 x^{5} + 2508975903 x^{4} - 6699277158 x^{3} + 23166778845 x^{2} - 36740356506 x + 47051159113 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178541578852998866709992697969426969133056=-\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(3275,·)$, $\chi_{4788}(1679,·)$, $\chi_{4788}(83,·)$, $\chi_{4788}(2519,·)$, $\chi_{4788}(923,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(3611,·)$, $\chi_{4788}(419,·)$, $\chi_{4788}(4453,·)$, $\chi_{4788}(2857,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(3697,·)$, $\chi_{4788}(4115,·)$, $\chi_{4788}(2101,·)$, $\chi_{4788}(3193,·)$, $\chi_{4788}(1597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{14} a^{8} + \frac{1}{7} a^{5} - \frac{1}{2} a^{4} + \frac{1}{14} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{9} - \frac{3}{14} a^{5} - \frac{3}{7} a^{4} + \frac{5}{14} a^{3} - \frac{1}{7} a^{2} - \frac{1}{2} a$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{6} + \frac{2}{7} a^{5} - \frac{3}{14} a^{4} - \frac{3}{7} a^{3} - \frac{5}{14} a^{2}$, $\frac{1}{14} a^{11} - \frac{1}{14} a^{7} + \frac{5}{14} a^{5} - \frac{2}{7} a^{4} + \frac{3}{14} a^{3} - \frac{2}{7} a^{2}$, $\frac{1}{490} a^{12} - \frac{2}{245} a^{11} + \frac{17}{490} a^{10} + \frac{6}{245} a^{9} - \frac{9}{490} a^{8} + \frac{13}{245} a^{7} - \frac{2}{245} a^{6} - \frac{121}{245} a^{5} + \frac{4}{245} a^{4} + \frac{13}{35} a^{3} + \frac{3}{14} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{490} a^{13} + \frac{1}{490} a^{11} + \frac{1}{49} a^{10} + \frac{2}{245} a^{9} - \frac{1}{49} a^{8} + \frac{3}{49} a^{7} + \frac{11}{245} a^{6} - \frac{3}{98} a^{5} + \frac{2}{245} a^{4} - \frac{8}{35} a^{3} + \frac{9}{35} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{490} a^{14} + \frac{1}{35} a^{11} - \frac{13}{490} a^{10} + \frac{13}{490} a^{9} + \frac{2}{245} a^{8} - \frac{2}{245} a^{7} - \frac{11}{490} a^{6} + \frac{71}{490} a^{5} - \frac{17}{98} a^{4} + \frac{17}{70} a^{3} + \frac{1}{14} a^{2} - \frac{3}{10} a + \frac{1}{10}$, $\frac{1}{490} a^{15} + \frac{4}{245} a^{11} - \frac{3}{98} a^{10} + \frac{11}{490} a^{9} + \frac{17}{490} a^{8} + \frac{1}{49} a^{7} - \frac{13}{490} a^{6} - \frac{197}{490} a^{5} - \frac{12}{35} a^{4} + \frac{31}{70} a^{3} + \frac{17}{35} a^{2} - \frac{1}{10}$, $\frac{1}{36043748510501558912638420} a^{16} + \frac{83030121332500495606}{183896676073987545472645} a^{15} - \frac{7537117920193128622472}{9010937127625389728159605} a^{14} - \frac{7956061229309155665291}{18021874255250779456319210} a^{13} + \frac{2031385066682574082793}{9010937127625389728159605} a^{12} + \frac{531356361075048372637969}{18021874255250779456319210} a^{11} + \frac{61228187167027409805687}{2574553465035825636617030} a^{10} + \frac{38025266444284324552406}{9010937127625389728159605} a^{9} + \frac{1246595542293973258321189}{36043748510501558912638420} a^{8} + \frac{134734534059900639251157}{9010937127625389728159605} a^{7} - \frac{410661532524715721736443}{9010937127625389728159605} a^{6} - \frac{3391687771318877776830243}{18021874255250779456319210} a^{5} + \frac{3822231336632303248505113}{36043748510501558912638420} a^{4} - \frac{22527094879436693282997}{257455346503582563661703} a^{3} - \frac{1217848998106803183199101}{2574553465035825636617030} a^{2} + \frac{50733858808854106364047}{367793352147975090945290} a - \frac{529794649869335215523}{3976144347545676658868}$, $\frac{1}{174654025586240421485673548004079755048340} a^{17} - \frac{1800850433855093}{174654025586240421485673548004079755048340} a^{16} - \frac{1478224897221670770695285693490156552}{8732701279312021074283677400203987752417} a^{15} - \frac{11843546599900633325758722681680526724}{43663506396560105371418387001019938762085} a^{14} - \frac{83079493178912717195935881215298777673}{87327012793120210742836774002039877524170} a^{13} - \frac{36977069009585852654251081351470736256}{43663506396560105371418387001019938762085} a^{12} + \frac{1565546296308291390001739455367206384439}{87327012793120210742836774002039877524170} a^{11} - \frac{3084794279166140849646274452485070915519}{87327012793120210742836774002039877524170} a^{10} + \frac{399445683089420023993950776587478614013}{34930805117248084297134709600815951009668} a^{9} + \frac{3395622990188187243782009914782746825003}{174654025586240421485673548004079755048340} a^{8} + \frac{2814771393072072917225519789039588604713}{87327012793120210742836774002039877524170} a^{7} - \frac{237114127791774802832953882486088230693}{6237643770937157910202626714431419823155} a^{6} - \frac{4395443586874064047995847563571119349227}{34930805117248084297134709600815951009668} a^{5} - \frac{7559479176739367117742839128088558135787}{24950575083748631640810506857725679292620} a^{4} + \frac{534574032536881699312921978678353531888}{1247528754187431582040525342886283964631} a^{3} - \frac{115189254591745581258572322919742227751}{1782183934553473688629321918408977092330} a^{2} - \frac{1730093648827697292974719113141490688669}{3564367869106947377258643836817954184660} a - \frac{6211902270151792297801792887587696273}{19266853346524039877073750469286238836}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{42}\times C_{84}\times C_{588}$, which has order $16595712$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.082400847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{9})^+\), 3.3.29241.1, 3.3.361.1, 3.3.29241.2, 6.0.432081216.1, 6.0.56309256150336.3, 6.0.77241777984.6, 6.0.56309256150336.2, 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |