Normalized defining polynomial
\( x^{18} - 16 x^{15} + 305 x^{12} + 786 x^{9} + 2385 x^{6} + 49 x^{3} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-177661819315004155453692747=-\,3^{27}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(117=3^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{117}(1,·)$, $\chi_{117}(68,·)$, $\chi_{117}(74,·)$, $\chi_{117}(14,·)$, $\chi_{117}(79,·)$, $\chi_{117}(16,·)$, $\chi_{117}(22,·)$, $\chi_{117}(92,·)$, $\chi_{117}(29,·)$, $\chi_{117}(94,·)$, $\chi_{117}(35,·)$, $\chi_{117}(100,·)$, $\chi_{117}(40,·)$, $\chi_{117}(107,·)$, $\chi_{117}(113,·)$, $\chi_{117}(53,·)$, $\chi_{117}(55,·)$, $\chi_{117}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{79} a^{12} - \frac{31}{79} a^{9} - \frac{8}{79} a^{6} - \frac{19}{79} a^{3} - \frac{33}{79}$, $\frac{1}{79} a^{13} - \frac{31}{79} a^{10} - \frac{8}{79} a^{7} - \frac{19}{79} a^{4} - \frac{33}{79} a$, $\frac{1}{79} a^{14} - \frac{31}{79} a^{11} - \frac{8}{79} a^{8} - \frac{19}{79} a^{5} - \frac{33}{79} a^{2}$, $\frac{1}{57528511} a^{15} + \frac{45494}{57528511} a^{12} + \frac{19067492}{57528511} a^{9} + \frac{24804470}{57528511} a^{6} - \frac{15246879}{57528511} a^{3} - \frac{4963710}{57528511}$, $\frac{1}{57528511} a^{16} + \frac{45494}{57528511} a^{13} + \frac{19067492}{57528511} a^{10} + \frac{24804470}{57528511} a^{7} - \frac{15246879}{57528511} a^{4} - \frac{4963710}{57528511} a$, $\frac{1}{57528511} a^{17} + \frac{45494}{57528511} a^{14} + \frac{19067492}{57528511} a^{11} + \frac{24804470}{57528511} a^{8} - \frac{15246879}{57528511} a^{5} - \frac{4963710}{57528511} a^{2}$
Class group and class number
$C_{7}$, which has order $7$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15755940}{57528511} a^{17} - \frac{252103760}{57528511} a^{14} + \frac{4805727925}{57528511} a^{11} + \frac{12381045689}{57528511} a^{8} + \frac{37579216725}{57528511} a^{5} + \frac{772067765}{57528511} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.136445 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.13689.2, 3.3.13689.1, \(\Q(\zeta_{9})^+\), 3.3.169.1, 6.0.562166163.1, 6.0.562166163.2, \(\Q(\zeta_{9})\), 6.0.771147.1, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |