Properties

Label 18.0.17737227313...4903.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{44}\cdot 23^{9}$
Root discriminant $70.33$
Ramified primes $3, 23$
Class number $37449$ (GRH)
Class group $[37449]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![103239849, -73205505, 99243441, -57927960, 44899785, -22062519, 12570585, -5261490, 2391597, -855266, 320526, -97146, 30192, -7560, 1908, -372, 72, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 72*x^16 - 372*x^15 + 1908*x^14 - 7560*x^13 + 30192*x^12 - 97146*x^11 + 320526*x^10 - 855266*x^9 + 2391597*x^8 - 5261490*x^7 + 12570585*x^6 - 22062519*x^5 + 44899785*x^4 - 57927960*x^3 + 99243441*x^2 - 73205505*x + 103239849)
 
gp: K = bnfinit(x^18 - 9*x^17 + 72*x^16 - 372*x^15 + 1908*x^14 - 7560*x^13 + 30192*x^12 - 97146*x^11 + 320526*x^10 - 855266*x^9 + 2391597*x^8 - 5261490*x^7 + 12570585*x^6 - 22062519*x^5 + 44899785*x^4 - 57927960*x^3 + 99243441*x^2 - 73205505*x + 103239849, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 72 x^{16} - 372 x^{15} + 1908 x^{14} - 7560 x^{13} + 30192 x^{12} - 97146 x^{11} + 320526 x^{10} - 855266 x^{9} + 2391597 x^{8} - 5261490 x^{7} + 12570585 x^{6} - 22062519 x^{5} + 44899785 x^{4} - 57927960 x^{3} + 99243441 x^{2} - 73205505 x + 103239849 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1773722731399331010404115847164903=-\,3^{44}\cdot 23^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $70.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(621=3^{3}\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{621}(1,·)$, $\chi_{621}(70,·)$, $\chi_{621}(139,·)$, $\chi_{621}(208,·)$, $\chi_{621}(277,·)$, $\chi_{621}(22,·)$, $\chi_{621}(346,·)$, $\chi_{621}(91,·)$, $\chi_{621}(415,·)$, $\chi_{621}(160,·)$, $\chi_{621}(484,·)$, $\chi_{621}(229,·)$, $\chi_{621}(553,·)$, $\chi_{621}(298,·)$, $\chi_{621}(367,·)$, $\chi_{621}(436,·)$, $\chi_{621}(505,·)$, $\chi_{621}(574,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4186954850560758341917949366983624269977411396707873} a^{17} + \frac{920239497120926580382772495444568532832559456636671}{4186954850560758341917949366983624269977411396707873} a^{16} + \frac{1643593766375373671084522883402682059142593931000386}{4186954850560758341917949366983624269977411396707873} a^{15} + \frac{818372402193863030519241447704851249909841859341071}{4186954850560758341917949366983624269977411396707873} a^{14} - \frac{1731719798117223921514414807801604375456297185038876}{4186954850560758341917949366983624269977411396707873} a^{13} + \frac{1008289114691467711106289615720671346295512796136978}{4186954850560758341917949366983624269977411396707873} a^{12} + \frac{1559758400059192633044580272686540954908513870412122}{4186954850560758341917949366983624269977411396707873} a^{11} + \frac{1093921227758268021447590045022184738434631231768323}{4186954850560758341917949366983624269977411396707873} a^{10} + \frac{461946685027071124645910763479022305052387778989916}{4186954850560758341917949366983624269977411396707873} a^{9} - \frac{1795020480028047730472672337261371909850057797172211}{4186954850560758341917949366983624269977411396707873} a^{8} + \frac{772060117527225858405310033341219825070396450333289}{4186954850560758341917949366983624269977411396707873} a^{7} - \frac{1008195750418419287731825897270933450368322300458976}{4186954850560758341917949366983624269977411396707873} a^{6} - \frac{1929347758078935650275058957094396550963262632050482}{4186954850560758341917949366983624269977411396707873} a^{5} + \frac{831019264250846636676838734725554442692428874368718}{4186954850560758341917949366983624269977411396707873} a^{4} - \frac{1512026114532912749334463813674809103797656041793034}{4186954850560758341917949366983624269977411396707873} a^{3} - \frac{2994910502113457073683760898595671474632555105591}{6471336708749240095700076301365725301356122715159} a^{2} - \frac{2063818235929425444911401563259193194739080805938255}{4186954850560758341917949366983624269977411396707873} a - \frac{2093363793812175239923786610978062917907035130997}{6471336708749240095700076301365725301356122715159}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{37449}$, which has order $37449$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40934.0329443 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-23}) \), \(\Q(\zeta_{9})^+\), 6.0.79827687.1, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ R $18$ $18$ $18$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.22.8$x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.8$x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
23Data not computed