Normalized defining polynomial
\( x^{18} - x^{17} + 131 x^{16} - 132 x^{15} + 6336 x^{14} - 6469 x^{13} + 143253 x^{12} - 140828 x^{11} + 1562253 x^{10} - 1571735 x^{9} + 8052725 x^{8} - 14267296 x^{7} + 27823148 x^{6} - 81796806 x^{5} + 58201854 x^{4} - 165861112 x^{3} + 190294745 x^{2} - 40222117 x + 639840259 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17548929959529003835585593295529296875=-\,3^{9}\cdot 5^{9}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(555=3\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{555}(256,·)$, $\chi_{555}(1,·)$, $\chi_{555}(451,·)$, $\chi_{555}(271,·)$, $\chi_{555}(16,·)$, $\chi_{555}(211,·)$, $\chi_{555}(344,·)$, $\chi_{555}(539,·)$, $\chi_{555}(284,·)$, $\chi_{555}(104,·)$, $\chi_{555}(554,·)$, $\chi_{555}(299,·)$, $\chi_{555}(46,·)$, $\chi_{555}(434,·)$, $\chi_{555}(181,·)$, $\chi_{555}(374,·)$, $\chi_{555}(121,·)$, $\chi_{555}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{43} a^{14} + \frac{12}{43} a^{13} - \frac{13}{43} a^{12} + \frac{21}{43} a^{11} - \frac{12}{43} a^{10} + \frac{20}{43} a^{9} + \frac{2}{43} a^{8} - \frac{18}{43} a^{7} + \frac{21}{43} a^{6} - \frac{15}{43} a^{5} + \frac{21}{43} a^{4} + \frac{7}{43} a^{3} - \frac{21}{43} a^{2} - \frac{13}{43} a - \frac{16}{43}$, $\frac{1}{43} a^{15} + \frac{15}{43} a^{13} + \frac{5}{43} a^{12} - \frac{6}{43} a^{11} - \frac{8}{43} a^{10} + \frac{20}{43} a^{9} + \frac{1}{43} a^{8} - \frac{21}{43} a^{7} - \frac{9}{43} a^{6} - \frac{14}{43} a^{5} + \frac{13}{43} a^{4} - \frac{19}{43} a^{3} - \frac{19}{43} a^{2} + \frac{11}{43} a + \frac{20}{43}$, $\frac{1}{8213} a^{16} + \frac{60}{8213} a^{15} - \frac{29}{8213} a^{14} - \frac{182}{8213} a^{13} - \frac{3047}{8213} a^{12} - \frac{3055}{8213} a^{11} + \frac{1401}{8213} a^{10} - \frac{3033}{8213} a^{9} + \frac{3950}{8213} a^{8} + \frac{3350}{8213} a^{7} - \frac{2338}{8213} a^{6} - \frac{683}{8213} a^{5} + \frac{1299}{8213} a^{4} + \frac{3693}{8213} a^{3} + \frac{3665}{8213} a^{2} + \frac{3574}{8213} a + \frac{21}{43}$, $\frac{1}{861419340369076709815030640002664753627179772221100693572014898911473} a^{17} + \frac{6046483515028307772321076722441468606567192833974670838772016121}{861419340369076709815030640002664753627179772221100693572014898911473} a^{16} + \frac{5114584703840406881069692241826255879619676709396325030876944991405}{861419340369076709815030640002664753627179772221100693572014898911473} a^{15} - \frac{5923697200884849164923818270142383570892968565158997144365857650952}{861419340369076709815030640002664753627179772221100693572014898911473} a^{14} - \frac{3800641113875712405728352494133267124085588048219959430720994993678}{861419340369076709815030640002664753627179772221100693572014898911473} a^{13} + \frac{21373249733326741976448166776662032043361577446878797204694523913755}{861419340369076709815030640002664753627179772221100693572014898911473} a^{12} + \frac{400199322885662825190951573684689488040879520015119808948223844261883}{861419340369076709815030640002664753627179772221100693572014898911473} a^{11} + \frac{173378427302679102279364434841136033474644016067280265356140477241660}{861419340369076709815030640002664753627179772221100693572014898911473} a^{10} + \frac{19536381195458612599098292105673237549525570066907619686262827539441}{861419340369076709815030640002664753627179772221100693572014898911473} a^{9} - \frac{119703814469125594511621237125782409921851347196956198206509336450715}{861419340369076709815030640002664753627179772221100693572014898911473} a^{8} - \frac{374780004336453799515554082982537877069795295223267181518233508677600}{861419340369076709815030640002664753627179772221100693572014898911473} a^{7} + \frac{416632797088271843820126231716734897503875844335430771872813744955}{4510048902455899004267176125668401851451202995921993160062905229903} a^{6} - \frac{109945158769887944285566176870745652950154764925509539059204538399690}{861419340369076709815030640002664753627179772221100693572014898911473} a^{5} - \frac{351333576047217162609867803514439581779260204923278442903998455606243}{861419340369076709815030640002664753627179772221100693572014898911473} a^{4} - \frac{383205241086714382379919343080101308168150042877696925885270748164194}{861419340369076709815030640002664753627179772221100693572014898911473} a^{3} - \frac{341456297405974136404581661288918511900617253704985473141691589685245}{861419340369076709815030640002664753627179772221100693572014898911473} a^{2} + \frac{119642412754431342543685404850183367780507172924073702804853371635649}{861419340369076709815030640002664753627179772221100693572014898911473} a + \frac{1055137954564329304315278369803447890354031954230671261873932976854}{4510048902455899004267176125668401851451202995921993160062905229903}$
Class group and class number
$C_{38}\times C_{6878}$, which has order $261364$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.3102125697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-555}) \), 3.3.1369.1, 6.0.234035854875.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | R | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | $18$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||