Normalized defining polynomial
\( x^{18} - 8 x^{15} + 21 x^{14} - 28 x^{13} + 32 x^{12} - 70 x^{11} + 182 x^{10} - 290 x^{9} + 280 x^{8} - 140 x^{7} + x^{6} + 42 x^{5} - 14 x^{4} - 4 x^{3} + 8 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17513643935890567069696=-\,2^{18}\cdot 7^{12}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{26} a^{14} + \frac{2}{13} a^{13} + \frac{2}{13} a^{12} + \frac{3}{13} a^{11} - \frac{3}{13} a^{10} + \frac{1}{26} a^{9} - \frac{11}{26} a^{7} - \frac{7}{26} a^{6} + \frac{2}{13} a^{5} - \frac{9}{26} a^{4} + \frac{3}{26} a^{3} + \frac{1}{13} a^{2} - \frac{2}{13} a + \frac{6}{13}$, $\frac{1}{78} a^{15} + \frac{1}{78} a^{14} - \frac{4}{39} a^{13} + \frac{7}{78} a^{12} + \frac{5}{26} a^{11} + \frac{19}{78} a^{10} - \frac{8}{39} a^{9} - \frac{11}{78} a^{8} + \frac{1}{3} a^{7} + \frac{25}{78} a^{6} - \frac{4}{39} a^{5} - \frac{3}{26} a^{4} - \frac{11}{26} a^{3} + \frac{29}{78} a^{2} + \frac{4}{13} a - \frac{5}{39}$, $\frac{1}{156} a^{16} + \frac{1}{13} a^{13} + \frac{5}{156} a^{12} - \frac{5}{39} a^{11} + \frac{7}{39} a^{10} + \frac{7}{78} a^{9} - \frac{1}{78} a^{8} - \frac{11}{78} a^{7} + \frac{5}{13} a^{6} - \frac{1}{39} a^{5} - \frac{9}{52} a^{4} + \frac{25}{78} a^{3} - \frac{1}{6} a^{2} + \frac{2}{39} a + \frac{10}{39}$, $\frac{1}{1181247132} a^{17} + \frac{1193741}{1181247132} a^{16} + \frac{481090}{295311783} a^{15} + \frac{5037737}{590623566} a^{14} + \frac{244243}{2329876} a^{13} - \frac{87502407}{393749044} a^{12} + \frac{1436807}{15144194} a^{11} + \frac{44059199}{295311783} a^{10} + \frac{48260783}{590623566} a^{9} - \frac{30843991}{295311783} a^{8} + \frac{18646609}{196874522} a^{7} + \frac{22774987}{98437261} a^{6} - \frac{521836837}{1181247132} a^{5} - \frac{53075467}{1181247132} a^{4} + \frac{133027847}{295311783} a^{3} + \frac{50290841}{196874522} a^{2} - \frac{104431060}{295311783} a - \frac{108579983}{295311783}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4435837}{393749044} a^{17} + \frac{10029719}{196874522} a^{16} + \frac{9353599}{590623566} a^{15} - \frac{47409803}{590623566} a^{14} - \frac{14460943}{90865164} a^{13} + \frac{190146023}{295311783} a^{12} - \frac{12125463}{15144194} a^{11} + \frac{308958517}{590623566} a^{10} - \frac{339319667}{295311783} a^{9} + \frac{1519779947}{295311783} a^{8} - \frac{5517177841}{590623566} a^{7} + \frac{2780530559}{295311783} a^{6} - \frac{5035012507}{1181247132} a^{5} - \frac{1077790}{98437261} a^{4} + \frac{67158857}{98437261} a^{3} + \frac{357489790}{295311783} a^{2} - \frac{50360289}{98437261} a - \frac{36693923}{295311783} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13709.522062672431 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{7})^+\), 3.1.2548.1, 6.0.25969216.1, 6.0.153664.1, 9.3.16542390592.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |