Normalized defining polynomial
\( x^{18} - x^{15} + 59536 x^{12} + 118341 x^{9} + 1171847088 x^{6} - 387420489 x^{3} + 7625597484987 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-174641799984367553282969504761435227000000000000=-\,2^{12}\cdot 3^{27}\cdot 5^{12}\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $421.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{27} a^{5} + \frac{1}{27} a^{2}$, $\frac{1}{81} a^{9} - \frac{1}{81} a^{6} + \frac{1}{81} a^{3}$, $\frac{1}{729} a^{10} - \frac{1}{729} a^{7} - \frac{242}{729} a^{4} + \frac{1}{3} a$, $\frac{1}{2187} a^{11} - \frac{1}{2187} a^{8} + \frac{487}{2187} a^{5} + \frac{1}{9} a^{2}$, $\frac{1}{12774267} a^{12} + \frac{52244}{12774267} a^{9} - \frac{4165505}{12774267} a^{6} + \frac{323}{1947} a^{3} + \frac{213}{649}$, $\frac{1}{344905209} a^{13} + \frac{209951}{344905209} a^{10} - \frac{55420280}{344905209} a^{7} + \frac{482491}{1419363} a^{4} + \frac{2809}{17523} a$, $\frac{1}{9312440643} a^{14} + \frac{209951}{9312440643} a^{11} - \frac{55420280}{9312440643} a^{8} - \frac{6614324}{38322801} a^{5} - \frac{224990}{473121} a^{2}$, $\frac{1}{39836749270184757} a^{15} + \frac{38421215}{39836749270184757} a^{12} + \frac{6059237218156}{39836749270184757} a^{9} - \frac{1103381633335}{14903385435909} a^{6} + \frac{187534490140}{2023916540679} a^{3} + \frac{38737603}{102825613}$, $\frac{1}{1075592230294988439} a^{16} + \frac{38421215}{1075592230294988439} a^{13} - \frac{485752482166841}{1075592230294988439} a^{10} + \frac{58694152523090}{402391406769543} a^{7} - \frac{9957034837214}{54645746598333} a^{4} + \frac{655691281}{2776291551} a$, $\frac{1}{29040990217964687853} a^{17} + \frac{38421215}{29040990217964687853} a^{14} - \frac{1961187640321832}{29040990217964687853} a^{11} + \frac{193376598684638}{10864567982777661} a^{8} - \frac{173969234504090}{1475435158154991} a^{5} - \frac{10449474923}{74959871877} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}\times C_{9}\times C_{9}\times C_{9}\times C_{54}\times C_{378}$, which has order $1205308188$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{237412}{39836749270184757} a^{15} + \frac{257095}{39836749270184757} a^{12} - \frac{15689045440}{39836749270184757} a^{9} - \frac{102805930}{163937239794999} a^{6} - \frac{23509298170}{2023916540679} a^{3} + \frac{51472342}{102825613} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66851395.5778903 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1598700.2 x3, 3.3.431649.2, 6.0.7667525070000.2, 6.0.1048907070000.2 x2, 6.0.558962577603.2, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 5 | Data not computed | ||||||
| $73$ | 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.1 | $x^{3} - 73$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |