Normalized defining polynomial
\( x^{18} - 3 x^{17} - 108 x^{16} + 600 x^{15} + 3168 x^{14} - 32412 x^{13} + 37830 x^{12} + 431202 x^{11} - 1661769 x^{10} - 248865 x^{9} + 15726006 x^{8} - 46463802 x^{7} + 69765816 x^{6} - 92066016 x^{5} + 236050848 x^{4} - 606480096 x^{3} + 985387392 x^{2} - 911283456 x + 415009792 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1740244769080179953822298827108004668139896832=-\,2^{18}\cdot 3^{30}\cdot 7^{9}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $326.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{10} - \frac{1}{16} a^{9} + \frac{1}{24} a^{8} - \frac{1}{8} a^{7} - \frac{5}{48} a^{6} + \frac{1}{16} a^{5} + \frac{5}{24} a^{4} + \frac{1}{8} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{9} + \frac{1}{48} a^{7} + \frac{1}{48} a^{5} + \frac{7}{24} a^{3} + \frac{1}{3} a$, $\frac{1}{192} a^{12} - \frac{1}{96} a^{11} - \frac{1}{192} a^{10} + \frac{1}{24} a^{9} + \frac{1}{192} a^{8} + \frac{11}{96} a^{7} + \frac{13}{192} a^{6} - \frac{5}{48} a^{5} + \frac{13}{96} a^{4} - \frac{5}{24} a^{3} + \frac{11}{24} a^{2} - \frac{1}{6} a$, $\frac{1}{192} a^{13} - \frac{1}{192} a^{11} - \frac{1}{96} a^{10} - \frac{11}{192} a^{9} + \frac{1}{24} a^{8} + \frac{13}{192} a^{7} - \frac{1}{96} a^{6} - \frac{17}{96} a^{5} - \frac{5}{48} a^{4} - \frac{1}{6} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{25728} a^{14} - \frac{65}{25728} a^{13} + \frac{17}{8576} a^{12} + \frac{187}{25728} a^{11} + \frac{11}{25728} a^{10} + \frac{623}{25728} a^{9} - \frac{381}{8576} a^{8} + \frac{751}{8576} a^{7} - \frac{517}{6432} a^{6} + \frac{1481}{12864} a^{5} - \frac{73}{6432} a^{4} + \frac{439}{3216} a^{3} + \frac{443}{1608} a^{2} - \frac{121}{402} a + \frac{1}{3}$, $\frac{1}{25728} a^{15} - \frac{5}{6432} a^{13} + \frac{3}{4288} a^{12} - \frac{7}{6432} a^{11} + \frac{133}{12864} a^{10} - \frac{253}{4288} a^{9} + \frac{293}{12864} a^{8} + \frac{595}{25728} a^{7} + \frac{1003}{12864} a^{6} + \frac{2185}{12864} a^{5} - \frac{115}{6432} a^{4} - \frac{1265}{3216} a^{3} - \frac{767}{1608} a^{2} - \frac{31}{134} a + \frac{1}{3}$, $\frac{1}{102912} a^{16} - \frac{1}{51456} a^{14} - \frac{107}{51456} a^{13} - \frac{91}{51456} a^{12} - \frac{87}{17152} a^{11} - \frac{43}{8576} a^{10} + \frac{1051}{17152} a^{9} - \frac{3899}{102912} a^{8} + \frac{1649}{51456} a^{7} - \frac{1947}{17152} a^{6} - \frac{263}{8576} a^{5} + \frac{2299}{12864} a^{4} - \frac{703}{2144} a^{3} - \frac{3}{536} a^{2} - \frac{17}{804} a + \frac{1}{3}$, $\frac{1}{1728569323695802220487680786796801142293504} a^{17} + \frac{2733780246918433846751742115654599569}{1728569323695802220487680786796801142293504} a^{16} + \frac{2966049532658225178037498578492180071}{288094887282633703414613464466133523715584} a^{15} + \frac{408557176412328728344963286539609757}{72023721820658425853653366116533380928896} a^{14} + \frac{328471832380742673733361601372706946349}{144047443641316851707306732233066761857792} a^{13} - \frac{146616351902953908697283022799901247379}{72023721820658425853653366116533380928896} a^{12} - \frac{4401211998516499966906927884453920414027}{864284661847901110243840393398400571146752} a^{11} + \frac{352690553657780537258847527099707592417}{288094887282633703414613464466133523715584} a^{10} + \frac{13531563418110735559276284701941758251965}{576189774565267406829226928932267047431168} a^{9} - \frac{49552134157031053166932414838088787249265}{1728569323695802220487680786796801142293504} a^{8} - \frac{6295712733391463696913087669410755641203}{144047443641316851707306732233066761857792} a^{7} + \frac{34439431826393786691206808868839324953401}{864284661847901110243840393398400571146752} a^{6} - \frac{71349044917771280777906007873694918830965}{432142330923950555121920196699200285573376} a^{5} - \frac{42906822411041893677116481070262268099385}{216071165461975277560960098349600142786688} a^{4} + \frac{14073679332156740321145059212652709109907}{36011860910329212926826683058266690464448} a^{3} + \frac{1052000736800730149000818702755857098895}{3376111960343363711890001536712502231042} a^{2} + \frac{407992697979826237451863250368777586003}{4501482613791151615853335382283336308056} a + \frac{1193668138425241441465466679149951851}{50389730751393488237164202040485107926}$
Class group and class number
$C_{2}\times C_{196072590}$, which has order $392145180$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15773424688.63964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.4104.1, 3.3.29241.1, 6.0.293277375783.2, 6.0.5777085888.7, 9.9.6566954215853707776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 19.12.10.1 | $x^{12} - 171 x^{6} + 23104$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |