Normalized defining polynomial
\( x^{18} - 6 x^{17} + 9 x^{16} + 13 x^{15} - 30 x^{14} - 35 x^{13} + 86 x^{12} - 421 x^{11} + 2163 x^{10} - 4960 x^{9} + 8548 x^{8} - 16577 x^{7} + 28762 x^{6} - 35630 x^{5} + 32042 x^{4} - 21435 x^{3} + 10881 x^{2} - 4995 x + 2025 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-173220192505318905457564663=-\,823^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $823$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{11} - \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{135} a^{16} + \frac{7}{135} a^{15} - \frac{1}{27} a^{14} - \frac{7}{135} a^{13} + \frac{14}{135} a^{12} + \frac{4}{45} a^{11} + \frac{2}{135} a^{10} + \frac{2}{27} a^{9} - \frac{2}{135} a^{8} + \frac{2}{5} a^{7} + \frac{8}{27} a^{6} - \frac{37}{135} a^{5} + \frac{22}{45} a^{4} - \frac{32}{135} a^{3} + \frac{2}{45} a^{2} - \frac{1}{5} a$, $\frac{1}{28135232390252197391557272435} a^{17} - \frac{1762453202159123081268481}{686225180250053594916031035} a^{16} - \frac{358045601947720602537483011}{28135232390252197391557272435} a^{15} + \frac{124616669363201987079081763}{2557748399113836126505206585} a^{14} + \frac{11956875192439571456104465}{5627046478050439478311454487} a^{13} - \frac{97623011896933067836299556}{625227386450048830923494943} a^{12} - \frac{177796237258541733707754904}{28135232390252197391557272435} a^{11} + \frac{3290043559302530902350810214}{28135232390252197391557272435} a^{10} + \frac{10679393535336337023308032}{1480801704750115652187224865} a^{9} + \frac{208028936924095493668136687}{1875682159350146492770484829} a^{8} + \frac{6432642640983780812319835798}{28135232390252197391557272435} a^{7} + \frac{8585567184801624016863806003}{28135232390252197391557272435} a^{6} - \frac{2780923387379958604936834046}{9378410796750732463852424145} a^{5} - \frac{2166888677532476072251973395}{5627046478050439478311454487} a^{4} + \frac{262776290553145766688166372}{1339772970964390351978917735} a^{3} + \frac{440345571215731792111758767}{1875682159350146492770484829} a^{2} + \frac{44521536669816732995136652}{183890407779426126742204395} a - \frac{10688187101714734732639555}{208409128816682943641164981}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 943839.99321 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-823}) \), 3.1.823.1 x3, 6.0.557441767.1, 9.1.458774574241.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 823 | Data not computed | ||||||