Properties

Label 18.0.17304111519...7056.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{27}\cdot 3^{24}\cdot 37^{17}$
Root discriminant $370.50$
Ramified primes $2, 3, 37$
Class number $218862630$ (GRH)
Class group $[3, 72954210]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14745141983744, 0, 9552891988224, 0, 2004094947840, 0, 203442083456, 0, 11442434112, 0, 374901168, 0, 7202864, 0, 78588, 0, 444, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 444*x^16 + 78588*x^14 + 7202864*x^12 + 374901168*x^10 + 11442434112*x^8 + 203442083456*x^6 + 2004094947840*x^4 + 9552891988224*x^2 + 14745141983744)
 
gp: K = bnfinit(x^18 + 444*x^16 + 78588*x^14 + 7202864*x^12 + 374901168*x^10 + 11442434112*x^8 + 203442083456*x^6 + 2004094947840*x^4 + 9552891988224*x^2 + 14745141983744, 1)
 

Normalized defining polynomial

\( x^{18} + 444 x^{16} + 78588 x^{14} + 7202864 x^{12} + 374901168 x^{10} + 11442434112 x^{8} + 203442083456 x^{6} + 2004094947840 x^{4} + 9552891988224 x^{2} + 14745141983744 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-17304111519831580155910725615927954423788077056=-\,2^{27}\cdot 3^{24}\cdot 37^{17}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $370.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2664=2^{3}\cdot 3^{2}\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{2664}(1,·)$, $\chi_{2664}(67,·)$, $\chi_{2664}(1921,·)$, $\chi_{2664}(1681,·)$, $\chi_{2664}(2371,·)$, $\chi_{2664}(691,·)$, $\chi_{2664}(625,·)$, $\chi_{2664}(601,·)$, $\chi_{2664}(2395,·)$, $\chi_{2664}(1825,·)$, $\chi_{2664}(739,·)$, $\chi_{2664}(1561,·)$, $\chi_{2664}(433,·)$, $\chi_{2664}(1003,·)$, $\chi_{2664}(1009,·)$, $\chi_{2664}(307,·)$, $\chi_{2664}(835,·)$, $\chi_{2664}(1915,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{352} a^{10} + \frac{1}{11}$, $\frac{1}{352} a^{11} + \frac{1}{11} a$, $\frac{1}{704} a^{12} + \frac{1}{22} a^{2}$, $\frac{1}{16192} a^{13} - \frac{3}{4048} a^{11} + \frac{1}{92} a^{9} - \frac{1}{184} a^{7} + \frac{5}{46} a^{5} - \frac{27}{253} a^{3} - \frac{61}{253} a$, $\frac{1}{48802688} a^{14} - \frac{6351}{12200672} a^{12} + \frac{333}{3050168} a^{10} - \frac{82}{34661} a^{8} + \frac{5}{138644} a^{6} + \frac{49055}{762542} a^{4} - \frac{143811}{762542} a^{2} - \frac{7292}{16577}$, $\frac{1}{59197660544} a^{15} - \frac{840045}{29598830272} a^{13} - \frac{647677}{3699853784} a^{11} - \frac{9315423}{336350344} a^{9} - \frac{3173737}{168175172} a^{7} - \frac{12814359}{462481723} a^{5} - \frac{110263315}{924963446} a^{3} + \frac{219272582}{462481723} a$, $\frac{1}{3623553127323996452095252016384} a^{16} - \frac{355379817134896890691}{78772894072260792436853304704} a^{14} + \frac{59742388597649752348908815}{452944140915499556511906502048} a^{12} + \frac{23702026700697384931538707}{19693223518065198109213326176} a^{10} - \frac{90531005261846131766171843}{5147092510403404051271664796} a^{8} - \frac{646113011843290987125461852}{14154504403609361140997078189} a^{6} + \frac{901285605525476751315407498}{14154504403609361140997078189} a^{4} + \frac{12833933713792428454310894}{488086358745150384172313041} a^{2} - \frac{80105542119214426216987}{507348091458810750958711}$, $\frac{1}{3623553127323996452095252016384} a^{17} - \frac{256966273577863189}{226472070457749778255953251024} a^{15} + \frac{12225691119785268484370679}{452944140915499556511906502048} a^{13} + \frac{22719405127169208665007949}{19693223518065198109213326176} a^{11} + \frac{35906999320229182377524456}{1286773127600851012817916199} a^{9} + \frac{908502881462879007842628741}{113236035228874889127976625512} a^{7} + \frac{3842187527378853726935764559}{56618017614437444563988312756} a^{5} - \frac{105116111103832202146386198}{488086358745150384172313041} a^{3} - \frac{5346097314978544323486237550}{14154504403609361140997078189} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{72954210}$, which has order $218862630$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 282437461.5224087 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-74}) \), 3.3.1369.1, 6.0.35504105984.1, 9.9.1866675593471230161.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ $18$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.9.12.2$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 54$$3$$3$$12$$C_9$$[2]^{3}$
3.9.12.2$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 54$$3$$3$$12$$C_9$$[2]^{3}$
37Data not computed