Normalized defining polynomial
\( x^{18} - 6 x^{17} + 63 x^{16} - 284 x^{15} + 2382 x^{14} - 8964 x^{13} + 66460 x^{12} - 209784 x^{11} + 1383909 x^{10} - 3584354 x^{9} + 21853467 x^{8} - 44268360 x^{7} + 254826777 x^{6} - 377964774 x^{5} + 2043736503 x^{4} - 2009879192 x^{3} + 9908381091 x^{2} - 4973847282 x + 21442432211 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1724925183796757382490845609984000000000=-\,2^{27}\cdot 3^{24}\cdot 5^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $151.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1,·)$, $\chi_{4680}(3979,·)$, $\chi_{4680}(3721,·)$, $\chi_{4680}(139,·)$, $\chi_{4680}(4579,·)$, $\chi_{4680}(1561,·)$, $\chi_{4680}(601,·)$, $\chi_{4680}(859,·)$, $\chi_{4680}(2401,·)$, $\chi_{4680}(1699,·)$, $\chi_{4680}(2161,·)$, $\chi_{4680}(3019,·)$, $\chi_{4680}(3121,·)$, $\chi_{4680}(1459,·)$, $\chi_{4680}(841,·)$, $\chi_{4680}(3961,·)$, $\chi_{4680}(2419,·)$, $\chi_{4680}(3259,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{2} a^{7} - \frac{5}{16} a^{6} - \frac{1}{4} a^{4} + \frac{7}{16} a^{3} + \frac{5}{16} a^{2} - \frac{1}{4} a - \frac{3}{16}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{5}{16} a^{7} - \frac{1}{16} a^{6} - \frac{5}{16} a^{4} + \frac{1}{4} a^{3} + \frac{3}{16} a^{2} + \frac{5}{16} a + \frac{1}{16}$, $\frac{1}{173062400144} a^{15} - \frac{571615383}{86531200072} a^{14} + \frac{2820391411}{173062400144} a^{13} + \frac{2004640911}{86531200072} a^{12} + \frac{741903309}{21632800018} a^{11} + \frac{5555783197}{173062400144} a^{10} + \frac{14113704913}{173062400144} a^{9} - \frac{20556845551}{173062400144} a^{8} - \frac{35568452893}{173062400144} a^{7} + \frac{61045671467}{173062400144} a^{6} - \frac{11237240625}{173062400144} a^{5} + \frac{626187583}{86531200072} a^{4} + \frac{3394259718}{10816400009} a^{3} - \frac{4596232710}{10816400009} a^{2} + \frac{56056331625}{173062400144} a + \frac{57881253141}{173062400144}$, $\frac{1}{149352851324272} a^{16} + \frac{111}{149352851324272} a^{15} - \frac{1653994038625}{74676425662136} a^{14} + \frac{3033411990357}{149352851324272} a^{13} + \frac{2357539713667}{74676425662136} a^{12} - \frac{699642478741}{37338212831068} a^{11} - \frac{8306353855391}{149352851324272} a^{10} + \frac{3159142923507}{149352851324272} a^{9} - \frac{8521238144461}{74676425662136} a^{8} - \frac{5672687494019}{149352851324272} a^{7} + \frac{36726216309157}{149352851324272} a^{6} + \frac{48173830238773}{149352851324272} a^{5} - \frac{63616889216167}{149352851324272} a^{4} - \frac{1736617406405}{18669106415534} a^{3} - \frac{13283562547817}{37338212831068} a^{2} - \frac{1945043031653}{149352851324272} a + \frac{13502394318049}{74676425662136}$, $\frac{1}{43075833729524728716612234235234594450064} a^{17} + \frac{40616975491863088403064323}{43075833729524728716612234235234594450064} a^{16} + \frac{20228256393867199613818646573}{10768958432381182179153058558808648612516} a^{15} - \frac{14570462014827334328214080270903952025}{2267149143659196248242749170275504971056} a^{14} + \frac{811697727472816966638785906921718024729}{43075833729524728716612234235234594450064} a^{13} + \frac{1347001776849996413413234796891650964013}{43075833729524728716612234235234594450064} a^{12} - \frac{473984097948814640991745799369134882483}{21537916864762364358306117117617297225032} a^{11} - \frac{1563418849055912274629928429539783950233}{43075833729524728716612234235234594450064} a^{10} + \frac{3880311514816530201456325832612510994819}{43075833729524728716612234235234594450064} a^{9} + \frac{2123821950836864071991497817840591402773}{43075833729524728716612234235234594450064} a^{8} + \frac{21162230688857578673512452964206847677177}{43075833729524728716612234235234594450064} a^{7} - \frac{136531932877038818208075711424031396761}{1133574571829598124121374585137752485528} a^{6} + \frac{433272750368498761703307589907054554699}{43075833729524728716612234235234594450064} a^{5} - \frac{202785227647048452514461100654399074995}{5384479216190591089576529279404324306258} a^{4} + \frac{9743546352537553754576339685901118435791}{43075833729524728716612234235234594450064} a^{3} - \frac{2975329713009444690646338918231090736189}{21537916864762364358306117117617297225032} a^{2} - \frac{3255238577689668161084634968487497983805}{21537916864762364358306117117617297225032} a + \frac{16025294136737907178393650671261568919967}{43075833729524728716612234235234594450064}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{126}\times C_{2646}$, which has order $2667168$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.1364448253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), 3.3.13689.2, \(\Q(\zeta_{9})^+\), 3.3.13689.1, 3.3.169.1, 6.0.11992878144000.7, 6.0.419904000.3, 6.0.11992878144000.6, 6.0.1827904000.2, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |