Normalized defining polynomial
\( x^{18} + 45 x^{16} + 738 x^{14} + 5996 x^{12} + 26937 x^{10} + 69201 x^{8} + 99645 x^{6} + 74337 x^{4} + 24555 x^{2} + 2809 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1724925183796757382490845609984=-\,2^{18}\cdot 3^{24}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(468=2^{2}\cdot 3^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{468}(1,·)$, $\chi_{468}(451,·)$, $\chi_{468}(133,·)$, $\chi_{468}(391,·)$, $\chi_{468}(139,·)$, $\chi_{468}(79,·)$, $\chi_{468}(211,·)$, $\chi_{468}(217,·)$, $\chi_{468}(157,·)$, $\chi_{468}(445,·)$, $\chi_{468}(289,·)$, $\chi_{468}(295,·)$, $\chi_{468}(235,·)$, $\chi_{468}(367,·)$, $\chi_{468}(373,·)$, $\chi_{468}(55,·)$, $\chi_{468}(313,·)$, $\chi_{468}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{6904} a^{14} + \frac{785}{6904} a^{12} + \frac{293}{6904} a^{10} + \frac{463}{6904} a^{8} - \frac{232}{863} a^{6} - \frac{131}{863} a^{4} + \frac{2657}{6904} a^{2} + \frac{1287}{6904}$, $\frac{1}{6904} a^{15} + \frac{785}{6904} a^{13} + \frac{293}{6904} a^{11} + \frac{463}{6904} a^{9} - \frac{232}{863} a^{7} - \frac{131}{863} a^{5} + \frac{2657}{6904} a^{3} + \frac{1287}{6904} a$, $\frac{1}{47665216} a^{16} + \frac{751}{11916304} a^{14} - \frac{1513365}{23832608} a^{12} + \frac{2486267}{23832608} a^{10} - \frac{2880397}{47665216} a^{8} + \frac{4524071}{23832608} a^{6} + \frac{21449343}{47665216} a^{4} - \frac{4735567}{23832608} a^{2} - \frac{9830247}{47665216}$, $\frac{1}{2526256448} a^{17} + \frac{21463}{631564112} a^{15} - \frac{106033021}{1263128224} a^{13} - \frac{62832477}{1263128224} a^{11} - \frac{238596765}{2526256448} a^{9} - \frac{560927337}{1263128224} a^{7} + \frac{649602879}{2526256448} a^{5} - \frac{55542103}{1263128224} a^{3} - \frac{236861383}{2526256448} a$
Class group and class number
$C_{18}\times C_{18}$, which has order $324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{74385}{315782056} a^{17} - \frac{597337}{39472757} a^{15} - \frac{57456135}{157891028} a^{13} - \frac{658084131}{157891028} a^{11} - \frac{7835651195}{315782056} a^{9} - \frac{12340599279}{157891028} a^{7} - \frac{39206115879}{315782056} a^{5} - \frac{13433248857}{157891028} a^{3} - \frac{5276234421}{315782056} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.136445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.13689.2, 3.3.169.1, \(\Q(\zeta_{9})^+\), 3.3.13689.1, 6.0.11992878144.4, 6.0.1827904.1, 6.0.419904.1, 6.0.11992878144.3, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |