Normalized defining polynomial
\( x^{18} - 3 x^{17} - 5 x^{16} + 51 x^{15} - 122 x^{14} - 612 x^{13} + 1167 x^{12} - 306 x^{11} + 4617 x^{10} + 27540 x^{9} + 20628 x^{8} + 39366 x^{7} + 164835 x^{6} + 227691 x^{5} + 857304 x^{4} + 2226366 x^{3} + 3332988 x^{2} + 2243862 x + 531441 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-172244018518353824873264845959168=-\,2^{12}\cdot 3^{9}\cdot 271^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 271$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{9} + \frac{1}{27} a^{7} + \frac{1}{27} a^{5} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{81} a^{10} + \frac{1}{81} a^{8} + \frac{1}{81} a^{6} + \frac{1}{27} a^{5} + \frac{7}{27} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{81} a^{11} + \frac{1}{81} a^{9} + \frac{1}{81} a^{7} + \frac{1}{27} a^{6} - \frac{2}{27} a^{5} + \frac{4}{9} a^{3}$, $\frac{1}{243} a^{12} + \frac{1}{243} a^{10} + \frac{10}{243} a^{8} + \frac{4}{81} a^{7} + \frac{4}{81} a^{6} - \frac{1}{27} a^{5} - \frac{8}{27} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{729} a^{13} - \frac{2}{729} a^{11} + \frac{7}{729} a^{9} - \frac{5}{243} a^{8} - \frac{2}{81} a^{7} + \frac{1}{81} a^{6} - \frac{1}{27} a^{5} - \frac{8}{27} a^{4} - \frac{13}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{2187} a^{14} - \frac{2}{2187} a^{12} + \frac{7}{2187} a^{10} - \frac{5}{729} a^{9} - \frac{11}{243} a^{8} + \frac{1}{243} a^{7} - \frac{4}{81} a^{6} + \frac{1}{81} a^{5} - \frac{7}{81} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{6561} a^{15} + \frac{4}{6561} a^{13} + \frac{1}{729} a^{12} - \frac{5}{6561} a^{11} - \frac{11}{2187} a^{10} - \frac{19}{2187} a^{9} - \frac{29}{729} a^{8} - \frac{4}{243} a^{7} - \frac{4}{81} a^{6} + \frac{26}{243} a^{5} + \frac{8}{81} a^{4} + \frac{13}{81} a^{3} - \frac{10}{27} a^{2} + \frac{4}{9} a$, $\frac{1}{59049} a^{16} + \frac{1}{19683} a^{15} + \frac{13}{59049} a^{14} - \frac{11}{19683} a^{13} - \frac{77}{59049} a^{12} + \frac{74}{19683} a^{11} - \frac{58}{19683} a^{10} - \frac{2}{2187} a^{9} + \frac{23}{729} a^{8} + \frac{40}{729} a^{7} - \frac{1}{2187} a^{6} + \frac{79}{729} a^{5} - \frac{245}{729} a^{4} - \frac{34}{81} a^{3} - \frac{2}{9} a^{2} - \frac{11}{27} a + \frac{1}{3}$, $\frac{1}{17565549019864566655481791841781} a^{17} + \frac{43721706204505341627962957}{5855183006621522218493930613927} a^{16} - \frac{1273673112648538122007945898}{17565549019864566655481791841781} a^{15} + \frac{1033029008320724556232740875}{5855183006621522218493930613927} a^{14} - \frac{8386778030984172465380885813}{17565549019864566655481791841781} a^{13} - \frac{119448758708330256786050153}{1951727668873840739497976871309} a^{12} + \frac{5369448204933099661785735704}{5855183006621522218493930613927} a^{11} - \frac{7057431671170668369510170635}{1951727668873840739497976871309} a^{10} - \frac{2311600002376285334858775446}{216858629874871193277552985701} a^{9} - \frac{5191173062518290245619307265}{216858629874871193277552985701} a^{8} - \frac{28632495143484233362879146991}{650575889624613579832658957103} a^{7} + \frac{1330410324530119064341603357}{24095403319430132586394776189} a^{6} + \frac{12957450871334682426362214976}{216858629874871193277552985701} a^{5} + \frac{32799425196992805211004626474}{72286209958290397759184328567} a^{4} - \frac{872756003955744106513440896}{8031801106476710862131592063} a^{3} - \frac{903990060546224773052179556}{8031801106476710862131592063} a^{2} + \frac{1014902136031544130587900593}{2677267035492236954043864021} a - \frac{61629099503231774632903823}{297474115054692994893762669}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{24801728435049142}{1742762093550236266401} a^{17} + \frac{29562582292277314}{580920697850078755467} a^{16} + \frac{73856916550353128}{1742762093550236266401} a^{15} - \frac{437173978811749313}{580920697850078755467} a^{14} + \frac{3781623310206322937}{1742762093550236266401} a^{13} + \frac{483507781363455196}{64546744205564306163} a^{12} - \frac{12227542213016016047}{580920697850078755467} a^{11} + \frac{3159880428648480070}{193640232616692918489} a^{10} - \frac{1590770936861051230}{21515581401854768721} a^{9} - \frac{7569098207153650537}{21515581401854768721} a^{8} - \frac{5615437335211633724}{64546744205564306163} a^{7} - \frac{3505108359472258225}{7171860467284922907} a^{6} - \frac{45008829005758515298}{21515581401854768721} a^{5} - \frac{14395281397763747182}{7171860467284922907} a^{4} - \frac{8762134816891953868}{796873385253880323} a^{3} - \frac{20308919815067173471}{796873385253880323} a^{2} - \frac{8602048548004184641}{265624461751293441} a - \frac{352945352737255009}{29513829083477049} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3453478086.089924 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.3252.1, 6.0.1982907.1, 6.0.31726512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 271 | Data not computed | ||||||