Normalized defining polynomial
\( x^{18} + 18 x^{16} + 216 x^{14} + 1464 x^{12} + 7200 x^{10} - 88 x^{9} + 20736 x^{8} - 792 x^{7} + 42048 x^{6} + 4752 x^{5} + 34560 x^{4} + 21120 x^{3} + 20736 x^{2} + 6336 x + 1936 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-170118159464158166333506387968=-\,2^{16}\cdot 3^{37}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{36} a^{9} + \frac{1}{3} a^{3} - \frac{2}{9}$, $\frac{1}{36} a^{10} + \frac{1}{3} a^{4} - \frac{2}{9} a$, $\frac{1}{72} a^{11} + \frac{1}{6} a^{5} + \frac{7}{18} a^{2}$, $\frac{1}{72} a^{12} + \frac{1}{6} a^{6} + \frac{7}{18} a^{3}$, $\frac{1}{72} a^{13} + \frac{1}{6} a^{7} + \frac{7}{18} a^{4}$, $\frac{1}{216} a^{14} - \frac{1}{216} a^{13} + \frac{1}{216} a^{12} + \frac{1}{216} a^{11} + \frac{1}{108} a^{10} - \frac{1}{108} a^{9} + \frac{2}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{18} a^{6} + \frac{1}{54} a^{5} - \frac{19}{54} a^{4} + \frac{1}{54} a^{3} - \frac{11}{54} a^{2} - \frac{11}{27} a - \frac{7}{27}$, $\frac{1}{216} a^{15} - \frac{1}{216} a^{12} - \frac{1}{108} a^{9} - \frac{1}{6} a^{7} - \frac{5}{54} a^{6} - \frac{1}{3} a^{4} - \frac{13}{54} a^{3} + \frac{1}{3} a - \frac{13}{27}$, $\frac{1}{432} a^{16} + \frac{1}{216} a^{13} + \frac{1}{108} a^{10} + \frac{1}{6} a^{8} - \frac{23}{108} a^{7} - \frac{1}{6} a^{5} + \frac{13}{54} a^{4} - \frac{1}{3} a^{2} + \frac{4}{27} a$, $\frac{1}{29760938172024048} a^{17} + \frac{744993521113}{2705539833820368} a^{16} + \frac{27604172412199}{14880469086012024} a^{15} - \frac{250341215479}{338192479227546} a^{14} - \frac{79481505603667}{14880469086012024} a^{13} - \frac{577321672447}{169096239613773} a^{12} + \frac{67062194127473}{14880469086012024} a^{11} + \frac{838837004033}{338192479227546} a^{10} - \frac{9428044721338}{1860058635751503} a^{9} + \frac{31030372172153}{676384958455092} a^{8} - \frac{1536633099616315}{7440234543006012} a^{7} + \frac{37513279717283}{338192479227546} a^{6} - \frac{394532334176147}{3720117271503006} a^{5} - \frac{84246994963259}{338192479227546} a^{4} - \frac{709761233521490}{1860058635751503} a^{3} - \frac{25646833478969}{338192479227546} a^{2} + \frac{452590013182415}{1860058635751503} a - \frac{23373242082566}{169096239613773}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{188003832685}{1240039090501002} a^{17} - \frac{494168063}{25051294757596} a^{16} - \frac{188718132832}{68891060583389} a^{15} - \frac{69317193511}{225461652818364} a^{14} - \frac{2268140293362}{68891060583389} a^{13} - \frac{129687355069}{37576942136394} a^{12} - \frac{1111153219346569}{4960156362004008} a^{11} - \frac{121007652498}{6262823689399} a^{10} - \frac{456611876599369}{413346363500334} a^{9} - \frac{3795507719980}{56365413204591} a^{8} - \frac{220714992652996}{68891060583389} a^{7} + \frac{48395308844}{6262823689399} a^{6} - \frac{4042412486584796}{620019545250501} a^{5} - \frac{4822574801328}{6262823689399} a^{4} - \frac{1172233595264278}{206673181750167} a^{3} - \frac{250961820587063}{112730826409182} a^{2} - \frac{237600249964644}{68891060583389} a - \frac{1082590866313}{18788471068197} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12312115.5749 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.756.1, 6.0.1714608.1, 9.9.238130328086784.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |