Normalized defining polynomial
\( x^{18} - 5 x^{17} + 62 x^{16} - 258 x^{15} + 2823 x^{14} - 9509 x^{13} + 90154 x^{12} - 246181 x^{11} + 2230268 x^{10} - 4683867 x^{9} + 41593164 x^{8} - 66097021 x^{7} + 582912192 x^{6} - 640807131 x^{5} + 5832541787 x^{4} - 3773174596 x^{3} + 37943392200 x^{2} - 8404855443 x + 122860198521 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1690518576584469820319183508027997709797486592=-\,2^{12}\cdot 47^{9}\cdot 79^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $325.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{15} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a$, $\frac{1}{3583422} a^{16} + \frac{3019}{1194474} a^{15} - \frac{120097}{3583422} a^{14} - \frac{40903}{1791711} a^{13} + \frac{146923}{1791711} a^{12} - \frac{122105}{1791711} a^{11} - \frac{262106}{1791711} a^{10} - \frac{221578}{597237} a^{9} + \frac{246100}{1791711} a^{8} + \frac{464543}{1791711} a^{7} - \frac{495356}{1791711} a^{6} + \frac{57145}{199079} a^{5} - \frac{38607}{199079} a^{4} + \frac{114362}{597237} a^{3} + \frac{533699}{3583422} a^{2} - \frac{368761}{1194474} a - \frac{85355}{398158}$, $\frac{1}{14158535685678127175856344236596067813636122972559522200963353457966} a^{17} + \frac{401149493870119349178902676054515325174661712760313046346601}{7079267842839063587928172118298033906818061486279761100481676728983} a^{16} - \frac{110537075826495201811756287324951656032352242685064326631773126012}{7079267842839063587928172118298033906818061486279761100481676728983} a^{15} - \frac{511094060208666310481600575763891526162269318743602245835016795897}{14158535685678127175856344236596067813636122972559522200963353457966} a^{14} + \frac{523709392626999325684419846969110386885220913403658545978519211903}{7079267842839063587928172118298033906818061486279761100481676728983} a^{13} + \frac{105228519819406246565747969214996198097408207141621926894872373965}{4719511895226042391952114745532022604545374324186507400321117819322} a^{12} - \frac{315090926190663365528520665154775732344264837051227953116673492576}{2359755947613021195976057372766011302272687162093253700160558909661} a^{11} + \frac{2020181233030477506429712917074457826850080143338367682390992682669}{14158535685678127175856344236596067813636122972559522200963353457966} a^{10} - \frac{3415929324998310409413208736802210055175958010430109954719736365465}{7079267842839063587928172118298033906818061486279761100481676728983} a^{9} - \frac{2867751812373432044216840847240817484320091739968955007236964693255}{14158535685678127175856344236596067813636122972559522200963353457966} a^{8} + \frac{1712161311438429519749295409360969956391957941071582351841910624805}{7079267842839063587928172118298033906818061486279761100481676728983} a^{7} - \frac{4430503213146450972117228548009787689266061347330898422311038757479}{14158535685678127175856344236596067813636122972559522200963353457966} a^{6} + \frac{360728939091750681619844683226751358569327384063932520212374356}{786585315871007065325352457588670434090895720697751233386852969887} a^{5} + \frac{465995344145000534077984967629730113007577589201577941384048398691}{1573170631742014130650704915177340868181791441395502466773705939774} a^{4} - \frac{1576666848905483885373524089355116109243260702122715397908421926201}{14158535685678127175856344236596067813636122972559522200963353457966} a^{3} + \frac{4810781193422308993490815869781365525671117742539953422586026972079}{14158535685678127175856344236596067813636122972559522200963353457966} a^{2} - \frac{354020630261669697194667310442227270806177464231215569174782865916}{786585315871007065325352457588670434090895720697751233386852969887} a + \frac{183935339504609233123736823233907012538570753391348820114619724167}{786585315871007065325352457588670434090895720697751233386852969887}$
Class group and class number
$C_{15}\times C_{30}\times C_{566370}$, which has order $254866500$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9044146.559729666 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 3.3.6241.1, 3.3.316.1, 6.0.10367349488.1, 6.0.4043914259663.2, 9.9.1229050175114176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $47$ | 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $79$ | 79.3.2.1 | $x^{3} - 79$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 79.3.2.1 | $x^{3} - 79$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 79.6.5.1 | $x^{6} - 79$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 79.6.5.1 | $x^{6} - 79$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |