Normalized defining polynomial
\( x^{18} - 2 x^{15} + 199 x^{12} + 1076 x^{9} + 37339 x^{6} + 66885 x^{3} + 117649 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16877848680315122776257224907=-\,3^{27}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(171=3^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{171}(64,·)$, $\chi_{171}(1,·)$, $\chi_{171}(68,·)$, $\chi_{171}(134,·)$, $\chi_{171}(7,·)$, $\chi_{171}(11,·)$, $\chi_{171}(140,·)$, $\chi_{171}(77,·)$, $\chi_{171}(83,·)$, $\chi_{171}(20,·)$, $\chi_{171}(26,·)$, $\chi_{171}(163,·)$, $\chi_{171}(106,·)$, $\chi_{171}(49,·)$, $\chi_{171}(115,·)$, $\chi_{171}(121,·)$, $\chi_{171}(58,·)$, $\chi_{171}(125,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{4} + \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{5} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{6} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} + \frac{1}{7} a$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{2}$, $\frac{1}{259} a^{12} + \frac{4}{259} a^{9} - \frac{109}{259} a^{6} + \frac{19}{259} a^{3} - \frac{9}{37}$, $\frac{1}{259} a^{13} + \frac{4}{259} a^{10} + \frac{2}{259} a^{7} - \frac{92}{259} a^{4} + \frac{48}{259} a$, $\frac{1}{1813} a^{14} - \frac{107}{1813} a^{11} - \frac{109}{1813} a^{8} + \frac{796}{1813} a^{5} + \frac{862}{1813} a^{2}$, $\frac{1}{95997655621} a^{15} - \frac{124809911}{95997655621} a^{12} - \frac{3333924913}{95997655621} a^{9} - \frac{25578465796}{95997655621} a^{6} - \frac{25881049809}{95997655621} a^{3} - \frac{58613089}{279876547}$, $\frac{1}{671983589347} a^{16} + \frac{987132046}{671983589347} a^{13} - \frac{12600107888}{671983589347} a^{10} - \frac{37068532685}{671983589347} a^{7} - \frac{18468103429}{671983589347} a^{4} + \frac{17029221}{1959135829} a$, $\frac{1}{4703885125429} a^{17} + \frac{987132046}{4703885125429} a^{14} - \frac{12600107888}{4703885125429} a^{11} + \frac{154926778557}{4703885125429} a^{8} - \frac{210463414671}{4703885125429} a^{5} - \frac{5300625172}{13713950803} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2018}{13713950803} a^{17} - \frac{200791}{13713950803} a^{14} + \frac{1068127}{13713950803} a^{11} - \frac{37675051}{13713950803} a^{8} - \frac{1377285}{279876547} a^{5} - \frac{9317434587}{13713950803} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.0824 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.29241.2, 3.3.29241.1, 3.3.361.1, \(\Q(\zeta_{9})^+\), 6.0.2565108243.2, 6.0.2565108243.1, 6.0.3518667.1, \(\Q(\zeta_{9})\), 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |