Normalized defining polynomial
\( x^{18} - 2 x^{17} + 47 x^{16} - 74 x^{15} + 907 x^{14} - 1134 x^{13} + 9377 x^{12} - 9216 x^{11} + 56719 x^{10} - 43522 x^{9} + 205793 x^{8} - 125158 x^{7} + 442963 x^{6} - 223626 x^{5} + 549366 x^{4} - 241380 x^{3} + 372456 x^{2} - 127008 x + 74088 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-168399912313071389456086597632=-\,2^{18}\cdot 3^{9}\cdot 7^{12}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{246} a^{14} + \frac{47}{123} a^{13} - \frac{85}{246} a^{12} - \frac{7}{123} a^{11} + \frac{73}{246} a^{10} - \frac{10}{41} a^{9} - \frac{121}{246} a^{8} + \frac{18}{41} a^{7} - \frac{29}{246} a^{6} + \frac{49}{123} a^{5} + \frac{23}{246} a^{4} - \frac{20}{123} a^{3} - \frac{65}{246} a^{2} - \frac{10}{41} a + \frac{7}{41}$, $\frac{1}{246} a^{15} - \frac{65}{246} a^{13} + \frac{52}{123} a^{12} - \frac{29}{82} a^{11} - \frac{17}{123} a^{10} + \frac{107}{246} a^{9} - \frac{40}{123} a^{8} - \frac{95}{246} a^{7} + \frac{59}{123} a^{6} - \frac{29}{82} a^{5} + \frac{2}{41} a^{4} + \frac{5}{246} a^{3} - \frac{50}{123} a^{2} + \frac{4}{41} a - \frac{2}{41}$, $\frac{1}{1748370708} a^{16} - \frac{48773}{437092677} a^{15} + \frac{669107}{1748370708} a^{14} - \frac{17643305}{437092677} a^{13} + \frac{93437383}{1748370708} a^{12} + \frac{2994306}{6937979} a^{11} - \frac{596208847}{1748370708} a^{10} - \frac{112900679}{291395118} a^{9} + \frac{289142887}{1748370708} a^{8} - \frac{181361242}{437092677} a^{7} - \frac{78651865}{249767244} a^{6} + \frac{78486713}{437092677} a^{5} + \frac{473488795}{1748370708} a^{4} + \frac{46952992}{145697559} a^{3} - \frac{122481799}{291395118} a^{2} - \frac{6261548}{48565853} a + \frac{875578}{6937979}$, $\frac{1}{1404974762980899931379231316} a^{17} + \frac{35778097738876855}{1404974762980899931379231316} a^{16} - \frac{693725954695175894710507}{1404974762980899931379231316} a^{15} + \frac{1194808453882077372859657}{1404974762980899931379231316} a^{14} - \frac{158202162639395095706128703}{1404974762980899931379231316} a^{13} - \frac{9466512850388455782192863}{66903560141947615779963396} a^{12} + \frac{426030260579006028241140611}{1404974762980899931379231316} a^{11} - \frac{5453613810136625420373151}{156108306997877770153247924} a^{10} + \frac{465414928315401339761361559}{1404974762980899931379231316} a^{9} - \frac{103360718851890007989136939}{1404974762980899931379231316} a^{8} - \frac{52358267114071972358507071}{200710680425842847339890188} a^{7} - \frac{308146875800501225551786945}{1404974762980899931379231316} a^{6} - \frac{649576805067640927024804715}{1404974762980899931379231316} a^{5} + \frac{149192265258790085262698419}{468324920993633310459743772} a^{4} - \frac{38365154170020901799579237}{117081230248408327614935943} a^{3} - \frac{26171678530177086001441193}{234162460496816655229871886} a^{2} + \frac{406022296783908139163128}{5575296678495634648330283} a - \frac{153139892175041023902970}{796470954070804949761469}$
Class group and class number
$C_{3}\times C_{6}\times C_{18}$, which has order $324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130703.898439 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-33}) \), 3.1.6468.1 x3, \(\Q(\zeta_{7})^+\), 6.0.5522223168.1, 6.0.112698432.1 x2, 6.0.5522223168.10, 9.3.270588935232.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.112698432.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |