Normalized defining polynomial
\( x^{18} - 6 x^{17} + 24 x^{16} - 64 x^{15} + 117 x^{14} - 141 x^{13} + 130 x^{12} - 42 x^{11} + 15 x^{10} + 122 x^{9} - 27 x^{8} + 72 x^{7} + 83 x^{6} + 27 x^{5} + 120 x^{4} + 26 x^{3} + 48 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1675426071127220243892207=-\,3^{18}\cdot 7^{4}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{3}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{5}{16} a^{5} - \frac{1}{8} a^{4} - \frac{7}{16} a^{3} + \frac{3}{16} a^{2} - \frac{3}{16} a - \frac{1}{16}$, $\frac{1}{224} a^{14} - \frac{1}{112} a^{13} - \frac{1}{16} a^{12} - \frac{1}{28} a^{11} + \frac{1}{28} a^{10} - \frac{5}{32} a^{9} - \frac{23}{56} a^{8} - \frac{1}{4} a^{7} + \frac{51}{224} a^{6} + \frac{1}{224} a^{5} + \frac{107}{224} a^{4} + \frac{3}{16} a^{3} - \frac{51}{112} a^{2} - \frac{27}{112} a + \frac{57}{224}$, $\frac{1}{448} a^{15} - \frac{1}{448} a^{14} + \frac{3}{112} a^{13} + \frac{3}{224} a^{12} + \frac{1}{16} a^{11} + \frac{57}{448} a^{10} - \frac{211}{448} a^{9} + \frac{47}{112} a^{8} + \frac{107}{448} a^{7} - \frac{43}{112} a^{6} + \frac{5}{28} a^{5} + \frac{205}{448} a^{4} + \frac{3}{7} a^{3} + \frac{13}{28} a^{2} + \frac{143}{448} a - \frac{139}{448}$, $\frac{1}{280448} a^{16} - \frac{89}{140224} a^{15} + \frac{137}{280448} a^{14} + \frac{3641}{140224} a^{13} + \frac{1191}{140224} a^{12} + \frac{2797}{280448} a^{11} + \frac{14457}{70112} a^{10} + \frac{18859}{280448} a^{9} + \frac{10265}{40064} a^{8} - \frac{41399}{280448} a^{7} + \frac{1091}{17528} a^{6} - \frac{7313}{40064} a^{5} - \frac{13439}{40064} a^{4} + \frac{13075}{35056} a^{3} + \frac{97655}{280448} a^{2} + \frac{36671}{140224} a + \frac{13351}{280448}$, $\frac{1}{560896} a^{17} - \frac{1}{560896} a^{16} - \frac{69}{560896} a^{15} + \frac{33}{80128} a^{14} - \frac{141}{5008} a^{13} - \frac{18797}{560896} a^{12} + \frac{27057}{560896} a^{11} - \frac{90861}{560896} a^{10} - \frac{124849}{280448} a^{9} - \frac{19821}{70112} a^{8} - \frac{104907}{560896} a^{7} + \frac{249065}{560896} a^{6} - \frac{8459}{17528} a^{5} - \frac{173917}{560896} a^{4} + \frac{222479}{560896} a^{3} + \frac{34419}{80128} a^{2} + \frac{83009}{560896} a - \frac{13507}{80128}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15531.2002104 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 16 conjugacy class representatives for t18n185 |
| Character table for t18n185 |
Intermediate fields
| 3.3.621.1, 3.1.23.1, 9.3.5508110403.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |