Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 18 x^{15} + 39 x^{14} - 69 x^{13} + 109 x^{12} - 129 x^{11} + 126 x^{10} - 92 x^{9} + 69 x^{8} - 45 x^{7} + 37 x^{6} - 15 x^{5} + 9 x^{4} - x^{3} + 3 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16736565124800000000=-\,2^{12}\cdot 3^{21}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{35} a^{15} - \frac{1}{35} a^{14} + \frac{9}{35} a^{13} - \frac{8}{35} a^{12} + \frac{12}{35} a^{11} - \frac{2}{7} a^{10} - \frac{2}{5} a^{9} - \frac{4}{35} a^{8} + \frac{2}{7} a^{7} + \frac{4}{35} a^{6} + \frac{16}{35} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{9}{35} a^{2} + \frac{2}{35} a + \frac{6}{35}$, $\frac{1}{35} a^{16} + \frac{8}{35} a^{14} + \frac{1}{35} a^{13} + \frac{4}{35} a^{12} + \frac{2}{35} a^{11} + \frac{11}{35} a^{10} + \frac{17}{35} a^{9} + \frac{6}{35} a^{8} + \frac{2}{5} a^{7} - \frac{3}{7} a^{6} - \frac{2}{5} a^{5} - \frac{2}{7} a^{4} - \frac{6}{35} a^{3} + \frac{11}{35} a^{2} + \frac{8}{35} a + \frac{6}{35}$, $\frac{1}{24955} a^{17} - \frac{2}{1085} a^{16} - \frac{152}{24955} a^{15} + \frac{10083}{24955} a^{14} - \frac{5017}{24955} a^{13} - \frac{3942}{24955} a^{12} + \frac{7764}{24955} a^{11} + \frac{3981}{24955} a^{10} - \frac{5641}{24955} a^{9} + \frac{924}{3565} a^{8} - \frac{5689}{24955} a^{7} + \frac{32}{1085} a^{6} - \frac{10221}{24955} a^{5} + \frac{2419}{24955} a^{4} + \frac{10072}{24955} a^{3} + \frac{407}{24955} a^{2} - \frac{8942}{24955} a + \frac{199}{24955}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{42}{713} a^{17} - \frac{17}{155} a^{16} + \frac{878}{3565} a^{15} - \frac{1606}{3565} a^{14} + \frac{3096}{3565} a^{13} - \frac{5018}{3565} a^{12} + \frac{3374}{3565} a^{11} + \frac{374}{3565} a^{10} - \frac{6734}{3565} a^{9} + \frac{9997}{3565} a^{8} - \frac{16814}{3565} a^{7} + \frac{954}{155} a^{6} - \frac{25948}{3565} a^{5} + \frac{2491}{713} a^{4} - \frac{8194}{3565} a^{3} + \frac{1336}{3565} a^{2} - \frac{5482}{3565} a + \frac{1862}{3565} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 302.516517627 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.787320000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |