Normalized defining polynomial
\( x^{18} - 342 x^{15} + 430920 x^{12} + 3789702 x^{9} + 403028703 x^{6} - 2173425048 x^{3} + 6068404224 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1664347916402943860452739891731999463197037109375=-\,3^{45}\cdot 5^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $477.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{7} - \frac{1}{2} a$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{228} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{228} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{684} a^{11} - \frac{1}{12} a^{5}$, $\frac{1}{9576} a^{12} - \frac{1}{3192} a^{9} + \frac{1}{24} a^{6} - \frac{23}{56} a^{3} + \frac{1}{7}$, $\frac{1}{19152} a^{13} + \frac{13}{6384} a^{10} - \frac{1}{16} a^{7} - \frac{9}{112} a^{4} + \frac{1}{14} a$, $\frac{1}{363888} a^{14} + \frac{5}{19152} a^{11} - \frac{1}{304} a^{8} - \frac{755}{6384} a^{5} + \frac{3}{14} a^{2}$, $\frac{1}{2109768758972983671696} a^{15} - \frac{524094785908849}{37013486999526029328} a^{12} - \frac{15574337950326339}{12337828999842009776} a^{9} - \frac{530218025617426747}{37013486999526029328} a^{6} + \frac{28482758861086099}{162339855261079076} a^{3} - \frac{5532977549067763}{40584963815269769}$, $\frac{1}{50634450215351608120704} a^{16} - \frac{8958825353369375}{444161843994312351936} a^{13} - \frac{14542583449928896}{6940028812411130499} a^{10} - \frac{1614524865986226353}{49351315999368039104} a^{7} - \frac{2825579915175908873}{15584626105063591296} a^{4} - \frac{210478705424800665}{649359421044316304} a$, $\frac{1}{810151203445625729931264} a^{17} + \frac{84887805124820423}{135025200574270954988544} a^{14} + \frac{1060239654916160305}{1776647375977249407744} a^{11} - \frac{3400263273858096189}{789621055989888625664} a^{8} + \frac{100458145491844036831}{1579242111979777251328} a^{5} - \frac{1277283468569034593}{10389750736709060864} a^{2}$
Class group and class number
$C_{3}\times C_{9}\times C_{18}$, which has order $486$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5491590146240000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_9$ (as 18T50):
| A solvable group of order 108 |
| The 18 conjugacy class representatives for $S_3\times D_9$ |
| Character table for $S_3\times D_9$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.146205.1, 6.0.320638530375.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.9.8.1 | $x^{9} + 76$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.9 | $x^{9} - 4864$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |