Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 150 x^{15} + 369 x^{14} - 711 x^{13} + 1119 x^{12} - 1449 x^{11} + 1458 x^{10} - 944 x^{9} + 135 x^{8} + 261 x^{7} + 69 x^{6} - 459 x^{5} + 279 x^{4} + 87 x^{3} - 99 x^{2} - 36 x + 37 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16599265906765726789632=-\,2^{12}\cdot 3^{39}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{33337} a^{16} - \frac{18}{33337} a^{15} + \frac{1157}{33337} a^{14} + \frac{5674}{33337} a^{13} + \frac{15006}{33337} a^{12} - \frac{12711}{33337} a^{11} + \frac{2971}{33337} a^{10} - \frac{2307}{33337} a^{9} + \frac{298}{901} a^{8} + \frac{8425}{33337} a^{7} - \frac{2134}{33337} a^{6} - \frac{11000}{33337} a^{5} + \frac{5315}{33337} a^{4} + \frac{2861}{33337} a^{3} - \frac{10107}{33337} a^{2} + \frac{164}{629} a - \frac{331}{901}$, $\frac{1}{10958722093511} a^{17} - \frac{84256642}{10958722093511} a^{16} - \frac{4959136058055}{10958722093511} a^{15} - \frac{2533206974919}{10958722093511} a^{14} + \frac{634065718798}{10958722093511} a^{13} - \frac{5392394680219}{10958722093511} a^{12} - \frac{2291008894789}{10958722093511} a^{11} + \frac{370860990890}{10958722093511} a^{10} + \frac{4406881466785}{10958722093511} a^{9} - \frac{5284779676043}{10958722093511} a^{8} - \frac{1400866361447}{10958722093511} a^{7} + \frac{3136213660618}{10958722093511} a^{6} + \frac{1268654233296}{10958722093511} a^{5} + \frac{3455544602950}{10958722093511} a^{4} + \frac{5012277225302}{10958722093511} a^{3} - \frac{3556536332192}{10958722093511} a^{2} - \frac{214515331562}{10958722093511} a + \frac{1624090626}{17422451659}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{838101743968}{10958722093511} a^{17} + \frac{6806609602755}{10958722093511} a^{16} - \frac{31325313759506}{10958722093511} a^{15} + \frac{95076188717768}{10958722093511} a^{14} - \frac{211686994831810}{10958722093511} a^{13} + \frac{368233076132381}{10958722093511} a^{12} - \frac{521563154055952}{10958722093511} a^{11} + \frac{592768317563272}{10958722093511} a^{10} - \frac{27179126381740}{644630711383} a^{9} + \frac{101345106160873}{10958722093511} a^{8} + \frac{221277975874344}{10958722093511} a^{7} - \frac{7804100427328}{644630711383} a^{6} - \frac{198102158301674}{10958722093511} a^{5} + \frac{14067328321184}{644630711383} a^{4} + \frac{8995680569872}{10958722093511} a^{3} - \frac{93084668224022}{10958722093511} a^{2} - \frac{900186154544}{644630711383} a + \frac{864693259789}{296181678203} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47261.4483684 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.2 x3, \(\Q(\zeta_{9})^+\), 6.0.2834352.2, 6.0.2834352.4 x2, \(\Q(\zeta_{9})\), 9.3.74384733888.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.2834352.4 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||