Normalized defining polynomial
\( x^{18} - 4 x^{17} + 4 x^{16} + 14 x^{15} - 47 x^{14} + 2 x^{13} + 153 x^{12} - 156 x^{11} - 191 x^{10} + 738 x^{9} - 739 x^{8} - 228 x^{7} + 1880 x^{6} - 3298 x^{5} + 3757 x^{4} - 3378 x^{3} + 2372 x^{2} - 1120 x + 256 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1658568561963902101824011=-\,491^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $491$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} + \frac{1}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{5}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{16} a^{10} - \frac{3}{32} a^{9} - \frac{1}{8} a^{8} + \frac{1}{32} a^{7} - \frac{3}{16} a^{6} + \frac{7}{32} a^{5} - \frac{1}{4} a^{4} - \frac{7}{32} a^{3} + \frac{7}{16} a^{2} - \frac{3}{8} a$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{16} a^{9} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{5}{32} a^{6} + \frac{3}{16} a^{5} - \frac{5}{32} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{224} a^{15} + \frac{1}{112} a^{14} + \frac{3}{224} a^{13} - \frac{1}{112} a^{12} + \frac{5}{224} a^{11} + \frac{3}{112} a^{10} - \frac{3}{32} a^{9} - \frac{1}{28} a^{8} + \frac{1}{32} a^{7} + \frac{1}{14} a^{6} - \frac{19}{224} a^{5} + \frac{3}{28} a^{4} + \frac{11}{112} a^{3} - \frac{23}{56} a^{2} - \frac{3}{28} a + \frac{1}{7}$, $\frac{1}{3584} a^{16} - \frac{1}{3584} a^{15} - \frac{3}{448} a^{14} + \frac{31}{3584} a^{13} + \frac{51}{1792} a^{12} - \frac{51}{3584} a^{11} + \frac{117}{1792} a^{10} - \frac{323}{3584} a^{9} + \frac{159}{1792} a^{8} + \frac{135}{3584} a^{7} - \frac{127}{896} a^{6} + \frac{473}{3584} a^{5} + \frac{671}{3584} a^{4} + \frac{789}{1792} a^{3} + \frac{55}{128} a^{2} - \frac{23}{112} a - \frac{3}{14}$, $\frac{1}{2297197353472} a^{17} + \frac{7038735}{143574834592} a^{16} + \frac{269927015}{2297197353472} a^{15} + \frac{31740419223}{2297197353472} a^{14} + \frac{775249939}{328171050496} a^{13} + \frac{6308996835}{2297197353472} a^{12} + \frac{32384335831}{2297197353472} a^{11} - \frac{186121891369}{2297197353472} a^{10} - \frac{51659698565}{2297197353472} a^{9} + \frac{24385848405}{2297197353472} a^{8} - \frac{18822803139}{328171050496} a^{7} + \frac{14718040205}{2297197353472} a^{6} - \frac{52574434145}{287149669184} a^{5} - \frac{445463196663}{2297197353472} a^{4} + \frac{307067241319}{1148598676736} a^{3} - \frac{12519172705}{82042762624} a^{2} - \frac{29372729163}{71787417296} a - \frac{400321381}{1281918166}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79186.8820128 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-491}) \), 3.1.491.1 x3, 6.0.118370771.1, 9.1.58120048561.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 491 | Data not computed | ||||||