Normalized defining polynomial
\( x^{18} - 6 x^{17} + 264 x^{16} - 1446 x^{15} + 33861 x^{14} - 153312 x^{13} + 2737851 x^{12} - 9357396 x^{11} + 151699395 x^{10} - 356745098 x^{9} + 5906580054 x^{8} - 8515724286 x^{7} + 160131076710 x^{6} - 118816855266 x^{5} + 2888612355147 x^{4} - 789904049838 x^{3} + 31158412601505 x^{2} - 1029715188852 x + 151614141291361 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16572404264697372849747294259176558211104768=-\,2^{24}\cdot 3^{31}\cdot 7^{14}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $251.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{54} a^{9} + \frac{1}{9} a^{8} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} - \frac{1}{18} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{18} a^{2} - \frac{7}{18} a + \frac{17}{54}$, $\frac{1}{54} a^{10} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{18} a^{3} - \frac{1}{18} a^{2} - \frac{19}{54} a + \frac{1}{9}$, $\frac{1}{54} a^{11} - \frac{1}{18} a^{8} + \frac{1}{9} a^{7} - \frac{1}{18} a^{6} + \frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} - \frac{5}{27} a^{2} - \frac{1}{18} a - \frac{7}{18}$, $\frac{1}{54} a^{12} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{5}{18} a^{4} + \frac{4}{27} a^{3} - \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{5}{18}$, $\frac{1}{54} a^{13} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{18} a^{5} - \frac{5}{27} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{7}{18} a + \frac{1}{9}$, $\frac{1}{162} a^{14} + \frac{1}{162} a^{13} + \frac{1}{162} a^{12} - \frac{1}{162} a^{11} - \frac{1}{162} a^{10} - \frac{1}{162} a^{9} + \frac{4}{27} a^{8} + \frac{4}{27} a^{7} + \frac{4}{27} a^{6} + \frac{23}{162} a^{5} - \frac{2}{81} a^{4} + \frac{25}{81} a^{3} - \frac{47}{162} a^{2} - \frac{10}{81} a + \frac{7}{162}$, $\frac{1}{162} a^{15} + \frac{1}{162} a^{12} + \frac{1}{162} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{162} a^{6} + \frac{1}{18} a^{5} + \frac{7}{18} a^{4} - \frac{37}{162} a^{3} + \frac{1}{18} a^{2} - \frac{5}{18} a + \frac{31}{81}$, $\frac{1}{162} a^{16} + \frac{1}{162} a^{13} + \frac{1}{162} a^{10} - \frac{1}{9} a^{8} - \frac{1}{162} a^{7} + \frac{1}{18} a^{6} + \frac{1}{18} a^{5} + \frac{71}{162} a^{4} + \frac{7}{18} a^{3} + \frac{1}{18} a^{2} - \frac{23}{81} a - \frac{4}{9}$, $\frac{1}{12054310478422737360826099723579380996249485473680295012599415843422} a^{17} - \frac{25749743475475486564988393743872483353806445548835562212307624125}{12054310478422737360826099723579380996249485473680295012599415843422} a^{16} + \frac{2929206481349496978949529710783210191124250724999185870954163461}{4018103492807579120275366574526460332083161824560098337533138614474} a^{15} - \frac{6138038805044234878845539953477118905963737550897329217284000491}{2009051746403789560137683287263230166041580912280049168766569307237} a^{14} - \frac{23824123688219088163786891041796109475806820349277686345106053}{6470375994859225636514277897788180889022804870467147081373814194} a^{13} + \frac{17634007494782169500578192883639027832688909991138881622911125589}{6027155239211368680413049861789690498124742736840147506299707921711} a^{12} + \frac{17045366040853845934471027533949527811662554548260829163864378287}{6027155239211368680413049861789690498124742736840147506299707921711} a^{11} + \frac{46624174576727382086996765663087767084503716977851059960125138042}{6027155239211368680413049861789690498124742736840147506299707921711} a^{10} + \frac{64299133735053237322573276513637987659759669457069837508787331767}{12054310478422737360826099723579380996249485473680295012599415843422} a^{9} - \frac{511663862425306543962140520642807743296749391369560081691467939661}{12054310478422737360826099723579380996249485473680295012599415843422} a^{8} + \frac{1251791362306956678716258629680438882656083577363167028849345165429}{12054310478422737360826099723579380996249485473680295012599415843422} a^{7} + \frac{138878554630422573391998892325979494345699065063773696713254555114}{2009051746403789560137683287263230166041580912280049168766569307237} a^{6} + \frac{116885251980760645016463011918507830220057774446225199117415370165}{2009051746403789560137683287263230166041580912280049168766569307237} a^{5} + \frac{17692749461343820294908392314285994525700590809237220085955218529}{4018103492807579120275366574526460332083161824560098337533138614474} a^{4} + \frac{5618935369303872596200296563401200182816948885384851080553560367453}{12054310478422737360826099723579380996249485473680295012599415843422} a^{3} - \frac{455357627343550566051440806026262045777898732890959746101353017947}{6027155239211368680413049861789690498124742736840147506299707921711} a^{2} - \frac{5469239293081049413178221418165015185964003464013704345691095891751}{12054310478422737360826099723579380996249485473680295012599415843422} a + \frac{242592855439764629731088189986743706722840275760739944601522168477}{6027155239211368680413049861789690498124742736840147506299707921711}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{6}\times C_{12}\times C_{7884}$, which has order $81741312$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4695974.091249611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-33}) \), 3.3.756.1, 3.3.3969.2, 6.0.36514291968.4, 6.0.4025700689472.9, 9.9.756284282720064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |