Normalized defining polynomial
\( x^{18} - 4 x^{17} - 13 x^{16} + 85 x^{15} - 3 x^{14} - 892 x^{13} + 2546 x^{12} - 2746 x^{11} + 1426 x^{10} - 7848 x^{9} + 28560 x^{8} - 33814 x^{7} - 21032 x^{6} + 99218 x^{5} - 93131 x^{4} - 6038 x^{3} + 106613 x^{2} - 64737 x + 51193 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16517057975479145583293328703=-\,13^{15}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{20} a^{14} - \frac{1}{5} a^{13} - \frac{1}{10} a^{12} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{3}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{20}$, $\frac{1}{260} a^{15} + \frac{3}{65} a^{13} + \frac{7}{65} a^{12} + \frac{3}{130} a^{11} + \frac{27}{130} a^{10} - \frac{1}{130} a^{9} - \frac{8}{65} a^{8} - \frac{7}{65} a^{7} - \frac{12}{65} a^{6} + \frac{9}{65} a^{5} - \frac{53}{130} a^{4} - \frac{49}{130} a^{3} + \frac{9}{130} a^{2} + \frac{19}{52} a + \frac{16}{65}$, $\frac{1}{260} a^{16} - \frac{1}{260} a^{14} - \frac{5}{26} a^{13} + \frac{8}{65} a^{12} - \frac{6}{65} a^{11} - \frac{7}{65} a^{10} + \frac{1}{13} a^{9} + \frac{5}{26} a^{8} + \frac{14}{65} a^{7} + \frac{57}{130} a^{6} + \frac{19}{65} a^{5} - \frac{31}{65} a^{4} - \frac{3}{13} a^{3} - \frac{9}{260} a^{2} - \frac{7}{130} a + \frac{9}{20}$, $\frac{1}{222090626248033653008929780749495288260} a^{17} + \frac{62308924644109558101049104436497372}{55522656562008413252232445187373822065} a^{16} + \frac{27458535985366064464942870392691663}{17083894326771819462225367749961176020} a^{15} - \frac{147842228636571579679630395077433433}{222090626248033653008929780749495288260} a^{14} + \frac{3402832591379939276662054162759486413}{55522656562008413252232445187373822065} a^{13} + \frac{4865567173279470999767850437880221773}{55522656562008413252232445187373822065} a^{12} - \frac{2267085278654659140674663621507328813}{11104531312401682650446489037474764413} a^{11} - \frac{5621925821211423684910714766602257027}{111045313124016826504464890374747644130} a^{10} - \frac{1253576690876425708527464616759295166}{11104531312401682650446489037474764413} a^{9} + \frac{6570310666924173582555218427318905503}{111045313124016826504464890374747644130} a^{8} - \frac{5297848562831106487567709775255208842}{55522656562008413252232445187373822065} a^{7} + \frac{363401040901983695860176307456556429}{4270973581692954865556341937490294005} a^{6} + \frac{16568207961640406215789084700205555436}{55522656562008413252232445187373822065} a^{5} - \frac{24813261812039940479132782866136470383}{55522656562008413252232445187373822065} a^{4} - \frac{20266036922147615275618350262828603139}{222090626248033653008929780749495288260} a^{3} - \frac{14464105206570521397340199176074068839}{55522656562008413252232445187373822065} a^{2} - \frac{6413240376559102562923892806789955925}{44418125249606730601785956149899057652} a - \frac{97786414907284793348490280878106096719}{222090626248033653008929780749495288260}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1209775.91379 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-247}) \), 3.1.247.1 x3, 3.3.169.1, 6.0.15069223.1, 6.0.2546698687.1, 6.0.2546698687.2 x2, 9.3.430392078103.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.2546698687.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |