Normalized defining polynomial
\( x^{18} + 5 x^{16} - 16 x^{15} + 306 x^{14} + 172 x^{13} + 5100 x^{12} + 4488 x^{11} + 75533 x^{10} + 72264 x^{9} + 817621 x^{8} + 822724 x^{7} + 6632797 x^{6} + 5813816 x^{5} + 37070685 x^{4} + 21380228 x^{3} + 129463023 x^{2} + 35149140 x + 219558249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-165107449555765648724828672000000000=-\,2^{18}\cdot 5^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1820=2^{2}\cdot 5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1820}(1,·)$, $\chi_{1820}(261,·)$, $\chi_{1820}(841,·)$, $\chi_{1820}(919,·)$, $\chi_{1820}(781,·)$, $\chi_{1820}(1101,·)$, $\chi_{1820}(81,·)$, $\chi_{1820}(659,·)$, $\chi_{1820}(1621,·)$, $\chi_{1820}(599,·)$, $\chi_{1820}(79,·)$, $\chi_{1820}(1439,·)$, $\chi_{1820}(1121,·)$, $\chi_{1820}(1381,·)$, $\chi_{1820}(1639,·)$, $\chi_{1820}(939,·)$, $\chi_{1820}(1199,·)$, $\chi_{1820}(1719,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{12} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{12} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{12} a^{3} + \frac{1}{12} a$, $\frac{1}{12} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{5}{12} a^{4} - \frac{5}{12} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{5}{12} a^{5} - \frac{1}{2} a^{4} - \frac{5}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{12} - \frac{1}{2} a^{7} + \frac{1}{12} a^{6} - \frac{1}{6} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{14} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{3853103052} a^{15} + \frac{9485651}{1926551526} a^{14} - \frac{58384327}{1926551526} a^{13} - \frac{20901242}{963275763} a^{12} + \frac{44598151}{1926551526} a^{11} - \frac{24801833}{642183842} a^{10} - \frac{40772723}{3853103052} a^{9} - \frac{2009444}{321091921} a^{8} - \frac{141460295}{642183842} a^{7} - \frac{202060826}{963275763} a^{6} + \frac{346280347}{3853103052} a^{5} + \frac{98746257}{642183842} a^{4} - \frac{175014343}{1284367684} a^{3} + \frac{257431006}{963275763} a^{2} + \frac{828490411}{1926551526} a + \frac{197069623}{642183842}$, $\frac{1}{8368939828944} a^{16} - \frac{83}{2092234957236} a^{15} - \frac{4721234855}{348705826206} a^{14} - \frac{84303838237}{2092234957236} a^{13} - \frac{97865365667}{4184469914472} a^{12} + \frac{3432597555}{232470550804} a^{11} + \frac{16943813551}{1394823304824} a^{10} + \frac{2459450923}{348705826206} a^{9} - \frac{170765656357}{8368939828944} a^{8} - \frac{193427676562}{523058739309} a^{7} - \frac{607671601787}{1394823304824} a^{6} - \frac{481626682073}{2092234957236} a^{5} - \frac{1456992216649}{8368939828944} a^{4} + \frac{224488238785}{523058739309} a^{3} - \frac{511714521823}{4184469914472} a^{2} + \frac{58584277214}{174352913103} a - \frac{1975932423}{5137470736}$, $\frac{1}{1642844539553204349552238241348304} a^{17} + \frac{25584735866829022315}{1642844539553204349552238241348304} a^{16} - \frac{2503725143478693473453}{34225927907358423949004963361423} a^{15} - \frac{9414962096782653723016683956899}{410711134888301087388059560337076} a^{14} - \frac{23227032551685001461964515622445}{821422269776602174776119120674152} a^{13} + \frac{3090506737711733909688277997585}{91269141086289130530679902297128} a^{12} + \frac{1033789580213089338997139523729}{91269141086289130530679902297128} a^{11} - \frac{16341405218249892372934179943}{91269141086289130530679902297128} a^{10} - \frac{50778668323178962528386708401221}{1642844539553204349552238241348304} a^{9} + \frac{8840576475807250470413538549497}{1642844539553204349552238241348304} a^{8} + \frac{26167041589889743126041467105195}{273807423258867391592039706891384} a^{7} + \frac{237910511573628348670232813127041}{821422269776602174776119120674152} a^{6} - \frac{564597473062291828633609947312289}{1642844539553204349552238241348304} a^{5} + \frac{376480430676351771106429877894857}{1642844539553204349552238241348304} a^{4} - \frac{386087751498598217324927140641985}{821422269776602174776119120674152} a^{3} + \frac{13460530662748127727069325067449}{273807423258867391592039706891384} a^{2} - \frac{87683728273390529688455766206327}{182538282172578261061359804594256} a + \frac{176485280678601632069916613851}{1008498796533581552825192290576}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{18}\times C_{558}$, which has order $80352$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 3.3.8281.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 3.3.169.1, 6.0.548599688000.3, 6.0.19208000.1, 6.0.548599688000.2, 6.0.228488000.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |