Normalized defining polynomial
\( x^{18} - 3 x^{17} + 66 x^{16} - 8 x^{15} + 7548 x^{14} + 51456 x^{13} + 277369 x^{12} + 1401495 x^{11} - 2483370 x^{10} - 5227070 x^{9} + 207680922 x^{8} - 291557100 x^{7} + 233470852 x^{6} - 171617115 x^{5} + 16443414363 x^{4} - 51037054889 x^{3} + 121351374567 x^{2} - 143569732788 x + 176288881193 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16413889305350509964853040604122672586106807=-\,3^{24}\cdot 13^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $251.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2223=3^{2}\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2223}(1600,·)$, $\chi_{2223}(1,·)$, $\chi_{2223}(196,·)$, $\chi_{2223}(337,·)$, $\chi_{2223}(1234,·)$, $\chi_{2223}(157,·)$, $\chi_{2223}(625,·)$, $\chi_{2223}(1000,·)$, $\chi_{2223}(235,·)$, $\chi_{2223}(2092,·)$, $\chi_{2223}(1390,·)$, $\chi_{2223}(1327,·)$, $\chi_{2223}(1585,·)$, $\chi_{2223}(1780,·)$, $\chi_{2223}(376,·)$, $\chi_{2223}(313,·)$, $\chi_{2223}(1873,·)$, $\chi_{2223}(1663,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} + \frac{8}{19} a^{8} + \frac{1}{19} a^{7} + \frac{7}{19} a^{6} + \frac{3}{19} a^{5} + \frac{9}{19} a^{4} - \frac{1}{19} a^{3} - \frac{4}{19} a^{2} - \frac{3}{19} a - \frac{1}{19}$, $\frac{1}{19} a^{10} - \frac{6}{19} a^{8} - \frac{1}{19} a^{7} + \frac{4}{19} a^{6} + \frac{4}{19} a^{5} + \frac{3}{19} a^{4} + \frac{4}{19} a^{3} - \frac{9}{19} a^{2} + \frac{4}{19} a + \frac{8}{19}$, $\frac{1}{19} a^{11} + \frac{9}{19} a^{8} - \frac{9}{19} a^{7} + \frac{8}{19} a^{6} + \frac{2}{19} a^{5} + \frac{1}{19} a^{4} + \frac{4}{19} a^{3} - \frac{1}{19} a^{2} + \frac{9}{19} a - \frac{6}{19}$, $\frac{1}{19} a^{12} - \frac{5}{19} a^{8} - \frac{1}{19} a^{7} - \frac{4}{19} a^{6} - \frac{7}{19} a^{5} - \frac{1}{19} a^{4} + \frac{8}{19} a^{3} + \frac{7}{19} a^{2} + \frac{2}{19} a + \frac{9}{19}$, $\frac{1}{589} a^{13} + \frac{15}{589} a^{12} - \frac{10}{589} a^{11} + \frac{1}{589} a^{10} + \frac{4}{589} a^{9} + \frac{90}{589} a^{8} + \frac{193}{589} a^{7} - \frac{156}{589} a^{6} - \frac{11}{31} a^{5} + \frac{238}{589} a^{4} + \frac{272}{589} a^{3} + \frac{91}{589} a^{2} + \frac{59}{589} a - \frac{6}{19}$, $\frac{1}{589} a^{14} + \frac{13}{589} a^{12} - \frac{4}{589} a^{11} - \frac{11}{589} a^{10} - \frac{1}{589} a^{9} + \frac{83}{589} a^{8} - \frac{168}{589} a^{7} + \frac{271}{589} a^{6} + \frac{56}{589} a^{5} + \frac{143}{589} a^{4} - \frac{238}{589} a^{3} + \frac{120}{589} a^{2} - \frac{110}{589} a + \frac{3}{19}$, $\frac{1}{21793} a^{15} - \frac{7}{21793} a^{14} - \frac{4}{21793} a^{13} - \frac{257}{21793} a^{12} - \frac{433}{21793} a^{11} - \frac{406}{21793} a^{10} + \frac{363}{21793} a^{9} + \frac{8385}{21793} a^{8} - \frac{842}{21793} a^{7} - \frac{9884}{21793} a^{6} + \frac{8822}{21793} a^{5} - \frac{201}{21793} a^{4} - \frac{6775}{21793} a^{3} - \frac{6062}{21793} a^{2} - \frac{474}{1147} a + \frac{2}{703}$, $\frac{1}{239723} a^{16} - \frac{1}{239723} a^{15} + \frac{65}{239723} a^{14} - \frac{2}{21793} a^{13} + \frac{4500}{239723} a^{12} + \frac{181}{21793} a^{11} + \frac{2700}{239723} a^{10} - \frac{4570}{239723} a^{9} - \frac{36150}{239723} a^{8} + \frac{51960}{239723} a^{7} - \frac{25248}{239723} a^{6} - \frac{77768}{239723} a^{5} - \frac{35}{1147} a^{4} + \frac{77608}{239723} a^{3} - \frac{61251}{239723} a^{2} + \frac{94766}{239723} a - \frac{1135}{7733}$, $\frac{1}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{17} - \frac{17518916718225978370844398351306926147377264979084701851219632721697598272}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{16} + \frac{2379661397320037502556542915957844864681841811388349887591802400838381251323}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{15} + \frac{8940941756694433973343969912873324194843507394901861991723921463954762479164}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{14} + \frac{91436484505654709686982539457970139696516417923497852395468040093609628897268}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{13} + \frac{3039831644814481749885421355007709761476104792497551581064504926616665266276205}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{12} + \frac{145629252928705908896573548963349710841717047092355414174828004525516936614800}{6826453034437236194491702726370936079035098911236170797182777906216881749747977} a^{11} - \frac{2045799456605498774273568512770381212641126952972847313845275003428889652223735}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{10} - \frac{919372991733017758618296262612845575953974251298039873248168414350739949793662}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{9} - \frac{9161051456540618111805826971235538061985211743120589786625669367242001929437890}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{8} + \frac{5251792046737075962517396856832182288250642181183875295938548637401823618454579}{11791146150391589790485668345549798681969716301226113195133889110738250295019233} a^{7} + \frac{55643512176626091564943501489014914100516597688629394415683264444366695122592882}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{6} + \frac{50690719187059399929755927282226419448009528217437956250794714756886092459254128}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{5} + \frac{2774246244686329182492889468631389823174693162556425211728108963973373953495646}{6826453034437236194491702726370936079035098911236170797182777906216881749747977} a^{4} - \frac{6410817129842301246175726513536498145438246844091103133585372111044500786660846}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{3} + \frac{19777498149129503634333144949926115696724162316438813035998414967819613632034255}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a^{2} - \frac{51695112171742153384083494237729644445585566205921497844800457127235303525235380}{129702607654307487695342351801047785501666879313487245146472780218120753245211563} a + \frac{1640876075703404466241537665382021250004650828893661365411649890636207495481205}{4183955085622822183720721025840251145215060623015717585370089684455508169200373}$
Class group and class number
$C_{3}\times C_{4280742}$, which has order $12842226$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15010229.973756868 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-247}) \), 3.3.361.1, 6.0.5439989503.1, 9.9.9025761726072081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| 19 | Data not computed | ||||||