Normalized defining polynomial
\( x^{18} - x^{17} + 13 x^{16} - 2 x^{15} + 115 x^{14} - 91 x^{13} + 1177 x^{12} - 1431 x^{11} + 6780 x^{10} - 7238 x^{9} + 35125 x^{8} - 55927 x^{7} + 162275 x^{6} - 210997 x^{5} + 444163 x^{4} - 469025 x^{3} + 586289 x^{2} - 145088 x + 90787 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-164037019762900412649715544064=-\,2^{12}\cdot 3^{6}\cdot 11^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{7}{15} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{15} a^{8} - \frac{4}{15} a^{7} - \frac{4}{15} a^{6} + \frac{7}{15} a^{5} + \frac{1}{15} a^{4} + \frac{1}{15} a^{3} + \frac{1}{15} a^{2} + \frac{4}{15}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{11} - \frac{2}{5} a^{10} + \frac{1}{3} a^{9} + \frac{4}{15} a^{8} - \frac{2}{15} a^{7} - \frac{2}{5} a^{6} + \frac{1}{3} a^{5} - \frac{7}{15} a^{4} - \frac{7}{15} a^{3} + \frac{7}{15} a^{2} + \frac{4}{15} a - \frac{2}{15}$, $\frac{1}{15} a^{14} + \frac{2}{15} a^{11} - \frac{7}{15} a^{10} + \frac{7}{15} a^{9} - \frac{1}{5} a^{8} + \frac{1}{3} a^{7} + \frac{1}{15} a^{6} - \frac{2}{5} a^{4} - \frac{7}{15} a^{3} + \frac{1}{3} a^{2} - \frac{2}{15} a + \frac{4}{15}$, $\frac{1}{15} a^{15} + \frac{7}{15} a^{11} + \frac{1}{15} a^{10} + \frac{2}{5} a^{9} + \frac{7}{15} a^{8} - \frac{2}{5} a^{7} - \frac{7}{15} a^{6} - \frac{1}{3} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{4}{15} a^{2} + \frac{4}{15} a + \frac{7}{15}$, $\frac{1}{75} a^{16} - \frac{1}{75} a^{15} - \frac{1}{75} a^{14} + \frac{2}{75} a^{13} - \frac{1}{75} a^{12} + \frac{31}{75} a^{11} + \frac{7}{25} a^{10} - \frac{1}{15} a^{9} - \frac{8}{25} a^{8} - \frac{23}{75} a^{7} - \frac{8}{25} a^{6} + \frac{2}{15} a^{5} - \frac{19}{75} a^{4} + \frac{23}{75} a^{3} - \frac{7}{25} a^{2} + \frac{13}{75} a + \frac{28}{75}$, $\frac{1}{9102487367694912004193215043520257325} a^{17} + \frac{18759074355459183669817447176022286}{3034162455898304001397738347840085775} a^{16} + \frac{22219797757216711931100649200003059}{1820497473538982400838643008704051465} a^{15} - \frac{224729455168326737174959656739895512}{9102487367694912004193215043520257325} a^{14} + \frac{72534221511665876131318016098000502}{9102487367694912004193215043520257325} a^{13} - \frac{152357677241708704682632713608152258}{9102487367694912004193215043520257325} a^{12} + \frac{10052698934106251080270049596122524}{121366498235932160055909533913603431} a^{11} + \frac{97136157891329936920784812629643183}{3034162455898304001397738347840085775} a^{10} - \frac{149958264840056352366040975101884189}{9102487367694912004193215043520257325} a^{9} - \frac{1233907040193387312487193994450364448}{3034162455898304001397738347840085775} a^{8} + \frac{4489316443359947822103033710777935664}{9102487367694912004193215043520257325} a^{7} - \frac{90985536994857143092617919680957837}{3034162455898304001397738347840085775} a^{6} + \frac{3751150365517063298355803236326764011}{9102487367694912004193215043520257325} a^{5} - \frac{2375676097237630271710906267275958738}{9102487367694912004193215043520257325} a^{4} + \frac{1251059238715486513547151840610629536}{9102487367694912004193215043520257325} a^{3} + \frac{911090568098134025265899934529819698}{3034162455898304001397738347840085775} a^{2} - \frac{499321508994386273787947616982614892}{1820497473538982400838643008704051465} a - \frac{2679594218538398386338336477022061848}{9102487367694912004193215043520257325}$
Class group and class number
$C_{126}$, which has order $126$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 368294.41393950605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.3.169.1, 3.1.2028.1, 6.0.5474115504.1, 6.0.38014691.1, 9.3.8340725952.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 13 | Data not computed | ||||||