/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 + 57*x^16 + 1254*x^14 + 13428*x^12 + 72789*x^10 + 189069*x^8 + 211985*x^6 + 107217*x^4 + 22743*x^2 + 1369, 18, 2, [0, 9], -163867657942686205372561998741504, [2, 3, 19], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/4*a^8 - 1/2*a^6 - 1/4*a^4 - 1/4*a^2 + 1/4, 1/4*a^9 - 1/2*a^7 - 1/4*a^5 - 1/4*a^3 + 1/4*a, 1/4*a^10 - 1/4*a^6 + 1/4*a^4 - 1/4*a^2 - 1/2, 1/4*a^11 - 1/4*a^7 + 1/4*a^5 - 1/4*a^3 - 1/2*a, 1/20*a^12 - 1/20*a^10 - 1/10*a^8 - 2/5*a^6 + 7/20*a^4 - 2/5*a^2 + 9/20, 1/20*a^13 - 1/20*a^11 - 1/10*a^9 - 2/5*a^7 + 7/20*a^5 - 2/5*a^3 + 9/20*a, 1/30620*a^14 + 727/30620*a^12 + 165/3062*a^10 - 977/15310*a^8 + 4863/30620*a^6 + 5619/15310*a^4 - 1413/6124*a^2 - 3799/15310, 1/1132940*a^15 + 16037/1132940*a^13 + 3227/113294*a^11 - 19626/283235*a^9 + 234513/1132940*a^7 + 29602/283235*a^5 + 35331/226588*a^3 + 57441/566470*a, 1/9303703280*a^16 + 18541/2325925820*a^14 - 114326001/4651851640*a^12 + 361400021/4651851640*a^10 + 1051090087/9303703280*a^8 - 1391501139/4651851640*a^6 - 1368096961/9303703280*a^4 - 106035011/930370328*a^2 + 16705197/50290288, 1/9303703280*a^17 + 16/581481455*a^15 - 9179553/4651851640*a^13 - 73184079/930370328*a^11 - 117959781/1860740656*a^9 + 1804527141/4651851640*a^7 - 2676432801/9303703280*a^5 - 2173839703/4651851640*a^3 - 2143941263/9303703280*a], 1, 592, [4, 148], 1, [ (19676441)/(9303703280)*a^(17) + (69052267)/(581481455)*a^(15) + (2373191821)/(930370328)*a^(13) + (121927552033)/(4651851640)*a^(11) + (1220891187563)/(9303703280)*a^(9) + (1320419905379)/(4651851640)*a^(7) + (343715495743)/(1860740656)*a^(5) + (96154239641)/(4651851640)*a^(3) - (10304686603)/(1860740656)*a , (129)/(2265880)*a^(16) + (4029)/(1132940)*a^(14) + (25118)/(283235)*a^(12) + (256169)/(226588)*a^(10) + (17731599)/(2265880)*a^(8) + (1616615)/(56647)*a^(6) + (107530483)/(2265880)*a^(4) + (12497569)/(566470)*a^(2) + (83353)/(61240) , (1079697)/(251451440)*a^(16) + (3805419)/(15715715)*a^(14) + (658477201)/(125725720)*a^(12) + (1369844691)/(25145144)*a^(10) + (70275310647)/(251451440)*a^(8) + (16150343061)/(25145144)*a^(6) + (130891243179)/(251451440)*a^(4) + (17911958649)/(125725720)*a^(2) + (2050135773)/(251451440) , (5962083)/(1162962910)*a^(17) + (337259291)/(1162962910)*a^(15) + (1466189661)/(232592582)*a^(13) + (153820479531)/(2325925820)*a^(11) + (200598983917)/(581481455)*a^(9) + (1917648583623)/(2325925820)*a^(7) + (349987192563)/(465185164)*a^(5) + (633999847517)/(2325925820)*a^(3) + (7274205537)/(232592582)*a , (83473249)/(9303703280)*a^(17) + (1182316619)/(2325925820)*a^(15) + (51524244599)/(4651851640)*a^(13) + (542707078451)/(4651851640)*a^(11) + (5702148759231)/(9303703280)*a^(9) + (1381627977979)/(930370328)*a^(7) + (12920224131523)/(9303703280)*a^(5) + (2232081854951)/(4651851640)*a^(3) + (367948957789)/(9303703280)*a , (5292835)/(465185164)*a^(17) + (746556327)/(1162962910)*a^(15) + (8080093907)/(581481455)*a^(13) + (67324960045)/(465185164)*a^(11) + (432803891646)/(581481455)*a^(9) + (4000827527647)/(2325925820)*a^(7) + (3295797388457)/(2325925820)*a^(5) + (93824826297)/(232592582)*a^(3) + (15964918402)/(581481455)*a , (20823027)/(9303703280)*a^(17) + (73909433)/(581481455)*a^(15) + (12934313959)/(4651851640)*a^(13) + (137209229631)/(4651851640)*a^(11) + (292531106857)/(1860740656)*a^(9) + (1835338787589)/(4651851640)*a^(7) + (3805714270877)/(9303703280)*a^(5) + (832161110857)/(4651851640)*a^(3) + (254050280303)/(9303703280)*a , (18927143)/(4651851640)*a^(16) + (533850661)/(2325925820)*a^(14) + (577718918)/(116296291)*a^(12) + (6017040320)/(116296291)*a^(10) + (1238274385909)/(4651851640)*a^(8) + (1433188712539)/(2325925820)*a^(6) + (2376302705979)/(4651851640)*a^(4) + (340722964671)/(2325925820)*a^(2) + (1248132547)/(125725720) ], 1472619.0824, [[x^2 + 1, 1], [x^3 - 57*x - 152, 1], [x^3 - 57*x - 19, 1], [x^3 - 3*x - 1, 1], [x^3 - x^2 - 6*x + 7, 1], [x^6 + 114*x^4 + 3249*x^2 + 23104, 1], [x^6 + 114*x^4 + 3249*x^2 + 361, 1], [x^6 + 6*x^4 + 9*x^2 + 1, 1], [x^6 + 13*x^4 + 50*x^2 + 49, 1], [x^9 - 3*x^8 - 24*x^7 + 74*x^6 + 117*x^5 - 429*x^4 + 119*x^3 + 243*x^2 - 69*x - 37, 1]]]