Normalized defining polynomial
\( x^{18} + 57 x^{16} + 1254 x^{14} + 13428 x^{12} + 72789 x^{10} + 189069 x^{8} + 211985 x^{6} + 107217 x^{4} + 22743 x^{2} + 1369 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-163867657942686205372561998741504=-\,2^{18}\cdot 3^{24}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(684=2^{2}\cdot 3^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{684}(1,·)$, $\chi_{684}(619,·)$, $\chi_{684}(391,·)$, $\chi_{684}(457,·)$, $\chi_{684}(463,·)$, $\chi_{684}(277,·)$, $\chi_{684}(343,·)$, $\chi_{684}(7,·)$, $\chi_{684}(349,·)$, $\chi_{684}(163,·)$, $\chi_{684}(229,·)$, $\chi_{684}(235,·)$, $\chi_{684}(49,·)$, $\chi_{684}(115,·)$, $\chi_{684}(577,·)$, $\chi_{684}(121,·)$, $\chi_{684}(505,·)$, $\chi_{684}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} - \frac{1}{10} a^{8} - \frac{2}{5} a^{6} + \frac{7}{20} a^{4} - \frac{2}{5} a^{2} + \frac{9}{20}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{11} - \frac{1}{10} a^{9} - \frac{2}{5} a^{7} + \frac{7}{20} a^{5} - \frac{2}{5} a^{3} + \frac{9}{20} a$, $\frac{1}{30620} a^{14} + \frac{727}{30620} a^{12} + \frac{165}{3062} a^{10} - \frac{977}{15310} a^{8} + \frac{4863}{30620} a^{6} + \frac{5619}{15310} a^{4} - \frac{1413}{6124} a^{2} - \frac{3799}{15310}$, $\frac{1}{1132940} a^{15} + \frac{16037}{1132940} a^{13} + \frac{3227}{113294} a^{11} - \frac{19626}{283235} a^{9} + \frac{234513}{1132940} a^{7} + \frac{29602}{283235} a^{5} + \frac{35331}{226588} a^{3} + \frac{57441}{566470} a$, $\frac{1}{9303703280} a^{16} + \frac{18541}{2325925820} a^{14} - \frac{114326001}{4651851640} a^{12} + \frac{361400021}{4651851640} a^{10} + \frac{1051090087}{9303703280} a^{8} - \frac{1391501139}{4651851640} a^{6} - \frac{1368096961}{9303703280} a^{4} - \frac{106035011}{930370328} a^{2} + \frac{16705197}{50290288}$, $\frac{1}{9303703280} a^{17} + \frac{16}{581481455} a^{15} - \frac{9179553}{4651851640} a^{13} - \frac{73184079}{930370328} a^{11} - \frac{117959781}{1860740656} a^{9} + \frac{1804527141}{4651851640} a^{7} - \frac{2676432801}{9303703280} a^{5} - \frac{2173839703}{4651851640} a^{3} - \frac{2143941263}{9303703280} a$
Class group and class number
$C_{4}\times C_{148}$, which has order $592$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{45507}{25145144} a^{17} - \frac{23778505}{232592582} a^{15} - \frac{1031396553}{465185164} a^{13} - \frac{10776392397}{465185164} a^{11} - \frac{111480678133}{930370328} a^{9} - \frac{130313920641}{465185164} a^{7} - \frac{219528264969}{930370328} a^{5} - \frac{29047893071}{465185164} a^{3} - \frac{781451079}{930370328} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.0824 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.29241.1, 3.3.29241.2, \(\Q(\zeta_{9})^+\), 3.3.361.1, 6.0.54722309184.5, 6.0.54722309184.1, 6.0.419904.1, 6.0.8340544.1, 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $19$ | 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |