Normalized defining polynomial
\( x^{18} + 285 x^{16} - 76 x^{15} + 44460 x^{14} + 3648 x^{13} + 3097703 x^{12} - 1431156 x^{11} + 33094599 x^{10} - 68927858 x^{9} + 1621667955 x^{8} + 2435565198 x^{7} + 21610704006 x^{6} + 17871018366 x^{5} + 337785531834 x^{4} + 994931059476 x^{3} + 5274173007969 x^{2} + 9476448749994 x + 18942165498853 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16373578698382653365249859609237042549755215872=-\,2^{18}\cdot 3^{24}\cdot 7^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $369.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(2437,·)$, $\chi_{4788}(4423,·)$, $\chi_{4788}(4171,·)$, $\chi_{4788}(4621,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(85,·)$, $\chi_{4788}(1849,·)$, $\chi_{4788}(4591,·)$, $\chi_{4788}(223,·)$, $\chi_{4788}(2407,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(169,·)$, $\chi_{4788}(3499,·)$, $\chi_{4788}(3949,·)$, $\chi_{4788}(559,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(2491,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9}$, $\frac{1}{133} a^{10} + \frac{2}{133} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{133} a^{11} - \frac{1}{133} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{133} a^{12} + \frac{1}{7} a^{6} + \frac{3}{7}$, $\frac{1}{931} a^{13} - \frac{3}{931} a^{10} + \frac{1}{931} a^{9} - \frac{20}{49} a^{8} + \frac{3}{7} a^{7} - \frac{17}{49} a^{6} + \frac{2}{49} a^{5} + \frac{4}{49} a^{4} + \frac{13}{49} a^{3} - \frac{6}{49} a^{2} + \frac{20}{49} a + \frac{5}{49}$, $\frac{1}{931} a^{14} - \frac{3}{931} a^{11} + \frac{1}{931} a^{10} + \frac{12}{931} a^{9} + \frac{3}{7} a^{8} - \frac{17}{49} a^{7} + \frac{2}{49} a^{6} + \frac{4}{49} a^{5} + \frac{13}{49} a^{4} - \frac{6}{49} a^{3} + \frac{20}{49} a^{2} + \frac{5}{49} a$, $\frac{1}{6517} a^{15} + \frac{3}{6517} a^{14} + \frac{2}{6517} a^{13} + \frac{4}{6517} a^{12} - \frac{1}{6517} a^{11} + \frac{23}{6517} a^{10} - \frac{81}{6517} a^{9} - \frac{8}{343} a^{8} + \frac{2}{7} a^{7} - \frac{136}{343} a^{6} - \frac{160}{343} a^{5} - \frac{22}{343} a^{4} + \frac{6}{49} a^{3} + \frac{95}{343} a^{2} + \frac{27}{343} a - \frac{116}{343}$, $\frac{1}{6517} a^{16} - \frac{2}{6517} a^{13} - \frac{13}{6517} a^{12} + \frac{5}{6517} a^{11} + \frac{4}{6517} a^{10} + \frac{18}{931} a^{9} - \frac{123}{343} a^{8} - \frac{157}{343} a^{7} + \frac{66}{343} a^{6} + \frac{45}{343} a^{5} + \frac{3}{343} a^{4} - \frac{24}{343} a^{3} - \frac{167}{343} a^{2} + \frac{34}{343} a + \frac{103}{343}$, $\frac{1}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{17} + \frac{57220258019235075028759100139113798607593496230479500688938216950293686176432794286395073}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{16} + \frac{1920579584073654976964099156069764787674088875709191740428212473468790562978892072144990}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{15} + \frac{495848189176222581908204290336167008636058688159733971932459994885132279603048649677075108}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{14} + \frac{502309075338179061186428802296424161501795327626735524211758742866767439801330597538865763}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{13} - \frac{470755328496474600405058665255693953362507764789697121387787117988371092646376397361543157}{161376400558330295815141244629004994966405671078436290348926304806749821510983420201154053687} a^{12} - \frac{305218815004795607105588457460512083637594036623204843938866728934901997394602059768652453}{161376400558330295815141244629004994966405671078436290348926304806749821510983420201154053687} a^{11} + \frac{1232700613677598090380452067728660666702139721828552382737214551986367866260795719622422906}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{10} - \frac{20732870145287810545562696314282892285778512235110347188990825151088383364280979160114839636}{1129634803908312070705988712403034964764839697549054032442484133647248750576883941408078375809} a^{9} - \frac{16399691051894547955284190678446117379080711922225763325755056038091996990527942714480737586}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411} a^{8} - \frac{14967061165509452846283151419048445517072941450281301981320258534767685111542901893654132531}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411} a^{7} - \frac{13704325657611147394168255396654820249104648240026770961977165677359654249728258757361940800}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411} a^{6} - \frac{4299593973695109067843508270491450974642307995048405204610900526635691240834581371699429}{86041191553683606573690967507276636816577020149977456961115403583460183607044248717196921} a^{5} - \frac{25428483382961075184789076961138388738567407911483442523697354361719729141356827679277377439}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411} a^{4} + \frac{20374832591199838687152144063681612363692128608364431631485910560588979331478579657538586072}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411} a^{3} - \frac{756309203441752699195631722151451480255585802807020693326046803674061462182696759294864322}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411} a^{2} + \frac{2805671204578148155788377501629809536708868572806477938326585001356576397957337900444922845}{8493494766227910306060065506789736577179245846233488965732963410881569553209653694797581773} a + \frac{7704170191470293148559554186698817369791323016880286765359245590876061537929296125770344374}{59454463363595372142420458547528156040254720923634422760130743876170986872467575863583072411}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{418188}$, which has order $428224512$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22027035.20428972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), 3.3.361.1, 6.0.54355325248.1, 9.9.9025761726072081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19 | Data not computed | ||||||