Normalized defining polynomial
\( x^{18} + 285 x^{16} - 76 x^{15} + 44460 x^{14} + 59052 x^{13} + 3094283 x^{12} + 1799718 x^{11} + 36134124 x^{10} + 100728424 x^{9} + 1560486036 x^{8} - 2931191484 x^{7} + 21949850871 x^{6} + 3554059440 x^{5} + 270199015086 x^{4} - 1052376262422 x^{3} + 6005339466180 x^{2} - 10915804281390 x + 18869246125489 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16373578698382653365249859609237042549755215872=-\,2^{18}\cdot 3^{24}\cdot 7^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $369.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(1903,·)$, $\chi_{4788}(841,·)$, $\chi_{4788}(1231,·)$, $\chi_{4788}(1681,·)$, $\chi_{4788}(979,·)$, $\chi_{4788}(1429,·)$, $\chi_{4788}(3415,·)$, $\chi_{4788}(4591,·)$, $\chi_{4788}(3361,·)$, $\chi_{4788}(4003,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(559,·)$, $\chi_{4788}(2353,·)$, $\chi_{4788}(3445,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(895,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9}$, $\frac{1}{19} a^{10}$, $\frac{1}{19} a^{11}$, $\frac{1}{19} a^{12}$, $\frac{1}{19} a^{13}$, $\frac{1}{19} a^{14}$, $\frac{1}{19} a^{15}$, $\frac{1}{429077} a^{16} - \frac{1469}{429077} a^{15} + \frac{7633}{429077} a^{14} - \frac{10073}{429077} a^{13} + \frac{3503}{429077} a^{12} - \frac{7592}{429077} a^{11} - \frac{1813}{429077} a^{10} + \frac{4226}{429077} a^{9} - \frac{7281}{22583} a^{8} - \frac{6129}{22583} a^{7} + \frac{2070}{22583} a^{6} - \frac{3753}{22583} a^{5} - \frac{2437}{22583} a^{4} + \frac{8667}{22583} a^{3} - \frac{2319}{22583} a^{2} + \frac{2778}{22583} a + \frac{7838}{22583}$, $\frac{1}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{17} + \frac{114361550552225986908762115843697881087093704517548701754196258886224491974086286456166643}{101061899905527003516770481943382097985563527764543640823462530028480412024307572884417687595139} a^{16} + \frac{423704442882707919203487020058565667646309316477554851481521459647810444171762626251930355363708}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{15} - \frac{325115763421636574500702395881599880049948461416180050970594108192089553699702354783732370440301}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{14} - \frac{497354051947843466924533498668798304134911247328492055296412937820836036242579301457214377933186}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{13} + \frac{272742112042304101060467444925907570858756201368316188001753692639736083955976832126423879496}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{12} + \frac{246315848234054484597462947746169943172065099918919539619861992073891894555519440784179971344811}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{11} + \frac{549827437673739211447630420339026340614805748903180292884354810396224400173849721739280844343254}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{10} - \frac{879454565233969923396032293376069477362466637554997364992141814065900445116404099604151220500966}{38302460064194734332856012656541815136528577022762039872092298880794076157212570123194303598557681} a^{9} - \frac{946522579662429329748165685689392681017234162358360830468104767220118618219944869744579957349812}{2015918950747091280676632245081148165080451422250633677478542046357582955642766848589173873608299} a^{8} - \frac{756488210675392253146419126764691890576034401645272283733367276242299610488481328305023045853633}{2015918950747091280676632245081148165080451422250633677478542046357582955642766848589173873608299} a^{7} + \frac{829242500717682063456178960883740291516022473727132957164938848819599560555727543952832916131048}{2015918950747091280676632245081148165080451422250633677478542046357582955642766848589173873608299} a^{6} - \frac{3836271754588694220738305334361609468219414099996333933092055831645849554232389525100415920868}{183265359158826480061512022280104378643677402022784879770776549668871177785706077144470352146209} a^{5} + \frac{624214598283967697247023325098359872863533965023407493633186346982998828749036180199713717569032}{2015918950747091280676632245081148165080451422250633677478542046357582955642766848589173873608299} a^{4} - \frac{79623379086195035222430507117012399569520025993516242611879597680487401526514092943809336990381}{2015918950747091280676632245081148165080451422250633677478542046357582955642766848589173873608299} a^{3} + \frac{23029071115923343199892112143406140748364232894296109540270893489001682881695755123993769470093}{183265359158826480061512022280104378643677402022784879770776549668871177785706077144470352146209} a^{2} - \frac{159526476502442748404854703102363806144796108527215311970133774350890022917573947450043429361040}{2015918950747091280676632245081148165080451422250633677478542046357582955642766848589173873608299} a - \frac{1201634167683977233094063782514502121136750419329175704091236079380789731368559447986528271359}{5319047363448789658777393786493794630819133040239138990708554212025284843384609099179878294481}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{9195132}$, which has order $147122112$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15010229.973756868 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), 3.3.361.1, 6.0.54355325248.1, 9.9.9025761726072081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||