Normalized defining polynomial
\( x^{18} - 9 x^{17} + 54 x^{16} - 216 x^{15} + 684 x^{14} - 1764 x^{13} + 4008 x^{12} - 8334 x^{11} + 15741 x^{10} - 27063 x^{9} + 41706 x^{8} - 50346 x^{7} + 47298 x^{6} - 97992 x^{5} + 209844 x^{4} - 186948 x^{3} + 39240 x^{2} + 12816 x + 6112 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-162771181452299835524978080837632=-\,2^{12}\cdot 3^{44}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} + \frac{1}{12} a^{8} + \frac{1}{12} a^{6} + \frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} + \frac{1}{12} a^{9} + \frac{1}{12} a^{7} + \frac{1}{6} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{5}{24} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{12} a^{5} - \frac{5}{12} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{24} a^{15} - \frac{1}{6} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{816} a^{16} - \frac{7}{408} a^{15} + \frac{1}{68} a^{14} + \frac{5}{204} a^{12} + \frac{5}{102} a^{11} - \frac{4}{51} a^{10} + \frac{77}{408} a^{9} - \frac{55}{272} a^{8} + \frac{1}{24} a^{7} + \frac{5}{102} a^{6} - \frac{79}{408} a^{5} - \frac{20}{51} a^{4} - \frac{15}{34} a^{3} + \frac{31}{68} a^{2} - \frac{31}{102} a + \frac{11}{51}$, $\frac{1}{224184129421895892453970639746192} a^{17} - \frac{1477723759206815134051857749}{14011508088868493278373164984137} a^{16} + \frac{781686552665472052286694035239}{112092064710947946226985319873096} a^{15} - \frac{1583993474909812050450325093043}{112092064710947946226985319873096} a^{14} + \frac{749444079963541556224806637567}{112092064710947946226985319873096} a^{13} + \frac{1686772144597428149664389144717}{112092064710947946226985319873096} a^{12} + \frac{805655225310597898779002010655}{37364021570315982075661773291032} a^{11} + \frac{156150212105972565757095573887}{18682010785157991037830886645516} a^{10} - \frac{5806024126966088947208259920981}{74728043140631964151323546582064} a^{9} + \frac{5312825229032048655517148639491}{37364021570315982075661773291032} a^{8} - \frac{13250371373947649621575948675021}{56046032355473973113492659936548} a^{7} + \frac{3877847508969403970430224920925}{37364021570315982075661773291032} a^{6} + \frac{1787636410906869954548658664621}{28023016177736986556746329968274} a^{5} - \frac{6390644861081852801267046831706}{14011508088868493278373164984137} a^{4} - \frac{15459295266747598684757563052483}{56046032355473973113492659936548} a^{3} - \frac{5763267344333421226092741726499}{28023016177736986556746329968274} a^{2} - \frac{964476282188284216483262275266}{4670502696289497759457721661379} a + \frac{4268125847491912104625344268658}{14011508088868493278373164984137}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2929716169.8555565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.243.1, 6.0.20253807.1, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |