Normalized defining polynomial
\( x^{18} - 2 x^{17} + 13 x^{16} + x^{15} - 9 x^{14} - 38 x^{13} + 110 x^{12} + 158 x^{11} + 440 x^{10} + 2672 x^{9} + 7706 x^{8} + 9636 x^{7} + 5218 x^{6} - 2402 x^{5} + 3841 x^{4} + 4210 x^{3} - 905 x^{2} + 125 x + 625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1619094273320941745099609375=-\,5^{9}\cdot 211^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{6} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{7} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{8} - \frac{1}{2} a^{5} - \frac{2}{5} a^{4}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{9} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5}$, $\frac{1}{20} a^{14} - \frac{2}{5} a^{6} - \frac{2}{5} a^{2} - \frac{1}{4}$, $\frac{1}{20} a^{15} + \frac{1}{10} a^{7} - \frac{2}{5} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{100} a^{16} - \frac{1}{50} a^{14} + \frac{1}{50} a^{13} + \frac{1}{50} a^{11} + \frac{1}{25} a^{10} - \frac{7}{50} a^{9} + \frac{1}{50} a^{8} - \frac{1}{25} a^{7} + \frac{19}{50} a^{6} + \frac{8}{25} a^{5} - \frac{19}{50} a^{4} + \frac{3}{25} a^{3} + \frac{1}{4} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{63534487194341334425932144900} a^{17} - \frac{141674997020158569114188479}{31767243597170667212966072450} a^{16} - \frac{1463912246526784347737613487}{63534487194341334425932144900} a^{15} + \frac{304224633922860782422472822}{15883621798585333606483036225} a^{14} - \frac{543953627456314015238365653}{31767243597170667212966072450} a^{13} - \frac{212452699510120615616189272}{15883621798585333606483036225} a^{12} - \frac{639829203573309288534716678}{15883621798585333606483036225} a^{11} - \frac{634154780076525430109131139}{15883621798585333606483036225} a^{10} + \frac{2174515902700678512797489047}{31767243597170667212966072450} a^{9} + \frac{1222359850705449681098396831}{6353448719434133442593214490} a^{8} - \frac{54759380443360712826188975}{635344871943413344259321449} a^{7} + \frac{13671112017603630392199592719}{31767243597170667212966072450} a^{6} + \frac{5837451491213796062760909704}{15883621798585333606483036225} a^{5} - \frac{467269011257318093331006356}{15883621798585333606483036225} a^{4} - \frac{22586803496162107436066264041}{63534487194341334425932144900} a^{3} + \frac{1412924187493103568463854546}{3176724359717066721296607245} a^{2} + \frac{1217891397786378074276469201}{12706897438868266885186428980} a + \frac{63684947229612715427360050}{635344871943413344259321449}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3094239.39528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-1055}) \), 3.1.1055.1 x3, 6.0.1174241375.1, 9.1.1238824650625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 211 | Data not computed | ||||||